Delineating zones to increase geographical detail in individual response data files: An application to the Spanish 2011 Census of population

Empreu sempre aquest identificador per citar o enllaçar aquest ítem
Información del item - Informació de l'item - Item information
Títol: Delineating zones to increase geographical detail in individual response data files: An application to the Spanish 2011 Census of population
Autors: Martínez Bernabeu, Lucas | Casado-Díaz, José M.
Grups d'investigació o GITE: Territorio y Movilidad. Mercados de Trabajo y Vivienda
Centre, Departament o Servei: Universidad de Alicante. Departamento de Análisis Económico Aplicado | Universidad de Alicante. Instituto Interuniversitario de Economía Internacional
Paraules clau: Labour market areas | Census | Microdata | Regionalisation | Clustering | Evolutionary computation | Spain | Regional science | Regional economics
Àrees de coneixement: Economía Aplicada
Data de publicació: 8-de juliol-2016
Editor: De Gruyter
Citació bibliogràfica: Moravian Geographical Reports. 2016, 24(2): 26-36. doi:10.1515/mgr-2016-0008
Resum: Due to confidentiality considerations, the microdata available from the 2011 Spanish Census have been codified at a provincial (NUTS 3) level except when the municipal (LAU 2) population exceeds 20,000 inhabitants (a requirement that is met by less than 5% of all municipalities). For the remainder of the municipalities within a given province, information is only provided for their classification in wide population intervals. These limitations, hampering territorially-focused socio-economic analyses, and more specifically, those related to the labour market, are observed in many other countries. This article proposes and demonstrates an automatic procedure aimed at delineating a set of areas that meet such population requirements and that may be used to re-codify the geographic reference in these cases, thereby increasing the territorial detail at which individual information is available. The method aggregates municipalities into clusters based on the optimisation of a relevant objective function subject to a number of statistical constraints, and is implemented using evolutionary computation techniques. Clusters are defined to fit outer boundaries at the level of labour market areas.
Patrocinadors: This work was supported by the Spanish Ministry of Economy and Competitiveness (grant number CSO2014-55780-C3-2-P, National R&D&i Plan 2013-2016).
ISSN: 1210-8812 | 2199-6202 (Online)
DOI: 10.1515/mgr-2016-0008
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License
Revisió científica: si
Versió de l'editor:
Apareix a la col·lecció: INV - TEYMO - Artículos de Revistas / Journal Articles

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
Thumbnail2016_Martinez_Casado_MoravianGeoRep.pdf3,12 MBAdobe PDFObrir Vista prèvia

Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.