Delineating zones to increase geographical detail in individual response data files: An application to the Spanish 2011 Census of population

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/56685
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorTerritorio y Movilidad. Mercados de Trabajo y Viviendaes_ES
dc.contributor.authorMartínez Bernabeu, Lucas-
dc.contributor.authorCasado-Díaz, José M.-
dc.contributor.otherUniversidad de Alicante. Departamento de Análisis Económico Aplicadoes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Interuniversitario de Economía Internacionales_ES
dc.date.accessioned2016-07-13T06:09:14Z-
dc.date.available2016-07-13T06:09:14Z-
dc.date.issued2016-07-08-
dc.identifier.citationMoravian Geographical Reports. 2016, 24(2): 26-36. doi:10.1515/mgr-2016-0008es_ES
dc.identifier.issn1210-8812-
dc.identifier.issn2199-6202 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/56685-
dc.description.abstractDue to confidentiality considerations, the microdata available from the 2011 Spanish Census have been codified at a provincial (NUTS 3) level except when the municipal (LAU 2) population exceeds 20,000 inhabitants (a requirement that is met by less than 5% of all municipalities). For the remainder of the municipalities within a given province, information is only provided for their classification in wide population intervals. These limitations, hampering territorially-focused socio-economic analyses, and more specifically, those related to the labour market, are observed in many other countries. This article proposes and demonstrates an automatic procedure aimed at delineating a set of areas that meet such population requirements and that may be used to re-codify the geographic reference in these cases, thereby increasing the territorial detail at which individual information is available. The method aggregates municipalities into clusters based on the optimisation of a relevant objective function subject to a number of statistical constraints, and is implemented using evolutionary computation techniques. Clusters are defined to fit outer boundaries at the level of labour market areas.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Economy and Competitiveness (grant number CSO2014-55780-C3-2-P, National R&D&i Plan 2013-2016).es_ES
dc.languageenges_ES
dc.publisherDe Gruyteres_ES
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Licensees_ES
dc.subjectLabour market areases_ES
dc.subjectCensuses_ES
dc.subjectMicrodataes_ES
dc.subjectRegionalisationes_ES
dc.subjectClusteringes_ES
dc.subjectEvolutionary computationes_ES
dc.subjectSpaines_ES
dc.subjectRegional sciencees_ES
dc.subjectRegional economicses_ES
dc.subject.otherEconomía Aplicadaes_ES
dc.titleDelineating zones to increase geographical detail in individual response data files: An application to the Spanish 2011 Census of populationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1515/mgr-2016-0008-
dc.relation.publisherversionhttp://dx.doi.org/10.1515/mgr-2016-0008es_ES
dc.identifier.cvIDA8362032-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Appears in Collections:INV - TEYMO - Artículos de Revistas / Journal Articles

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Martinez_Casado_MoravianGeoRep.pdf3,12 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.