3D code for MAgneto-Thermal evolution in Isolated Neutron Stars, MATINS: the magnetic field formalism

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129061
Información del item - Informació de l'item - Item information
Título: 3D code for MAgneto-Thermal evolution in Isolated Neutron Stars, MATINS: the magnetic field formalism
Autor/es: Dehman, Clara | Viganò, Daniele | Pons, José A. | Rea, Nanda
Grupo/s de investigación o GITE: Astrofísica Relativista
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Stars: neutron | Stars: magnetars | Stars: interiors | Stars: magnetic field | Stars: evolution
Fecha de publicación: 4-oct-2022
Editor: Oxford University Press
Cita bibliográfica: Monthly Notices of the Royal Astronomical Society. 2023, 518(1): 1222-1242. https://doi.org/10.1093/mnras/stac2761
Resumen: The long-term evolution of the internal, strong magnetic fields of neutron stars needs a specific numerical modeling. The diversity of the observed phenomenology of neutron stars indicates that their magnetic topology is rather complex and three-dimensional simulations are required, for example, to explain the observed bursting mechanisms and the creation of surface hotspots. We present MATINS, a new three dimensions numerical code for magneto-thermal evolution in neutron stars, based on a finite-volume scheme that employs the cubed-sphere system of coordinates. In this first work, we focus on the crustal magnetic evolution, with the inclusion of realistic calculations for the neutron star structure, composition and electrical conductivity assuming a simple temperature evolution profile. MATINS follows the evolution of strong fields (1014 − 1015 Gauss) with complex non-axisymmetric topologies and dominant Hall-drift terms, and it is suitable for handling sharp current sheets. After introducing the technical description of our approach and some tests, we present long-term simulations of the non-linear field evolution in realistic neutron star crusts. The results show how the non-axisymmetric Hall cascade redistributes the energy over different spatial scales. Following the exploration of different initial topologies, we conclude that during a few tens of kyr, an equipartition of energy between the poloidal and toroidal components happens at small-scales. However, the magnetic field keeps a strong memory of the initial large-scales, which are much harder to be restructured or created. This indicates that large-scale configuration attained during the neutron star formation is crucial to determine the field topology at any evolution stage.
Patrocinador/es: CD and NR are supported by the ERC Consolidator Grant “MAGNESIA” No. 817661 (PI: Rea) and this work has been carried out within the framework of the doctoral program in Physics of the Universitat Autònoma de Barcelona. This work was also partially supported by the program Unidad de Excelencia María de Maeztu CEX2020-001058-M. DV is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant "IMAGINE" No. 948582, PI: DV). JAP acknowledges support from the Generalitat Valenciana (PROMETEO/2019/071) and the AEI grant PID2021-127495NB-I00.
URI: http://hdl.handle.net/10045/129061
ISSN: 0035-8711 (Print) | 1365-2966 (Online)
DOI: 10.1093/mnras/stac2761
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1093/mnras/stac2761
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - Astrofísica Relativista - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailDehman_etal_2022_MNRAS.pdf3,3 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.