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A B S T R A C T 

The long-term evolution of the internal, strong magnetic fields of neutron stars needs a specific numerical modelling. The 
diversity of the observed phenomenology of neutron stars indicates that their magnetic topology is rather complex and 3D 

simulations are required, for example, to explain the observed bursting mechanisms and the creation of surface hotspots. We 
present MATINS , a new 3D numerical code for magnetothermal evolution in neutron stars, based on a finite-volume scheme that 
employs the cubed-sphere system of coordinates. In this first work, we focus on the crustal magnetic evolution, with the inclusion 

of realistic calculations for the neutron star structure, composition, and electrical conductivity assuming a simple temperature 
e volution profile. MATINS follo ws the e volution of strong fields (10 

14 − 10 

15 Gauss) with complex non-axisymmetric topologies 
and dominant Hall-drift terms, and it is suitable for handling sharp current sheets. After introducing the technical description of 
our approach and some tests, we present long-term simulations of the non-linear field evolution in realistic neutron star crusts. 
The results show how the non-axisymmetric Hall cascade redistributes the energy o v er different spatial scales. Following the 
exploration of different initial topologies, we conclude that during a few tens of kyr, an equipartition of energy between the 
poloidal and toroidal components happens at small-scales. Ho we ver, the magnetic field keeps a strong memory of the initial 
large scales, which are much harder to be restructured or created. This indicates that large-scale configuration attained during 

the neutron star formation is crucial to determine the field topology at any evolution stage. 

K ey words: stars: e volution – stars: interiors – stars: magnetars – stars: magnetic field – stars: neutron. 
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 I N T RO D U C T I O N  

nderstanding the long-term (Myr) evolution of the strong magnetic
elds embedding neutron stars (NSs), particularly magnetars, is key

o unraveling the physical processes at the origin of most of their
bserv ational phenomenology. Ho we ver, performing magnetohydro-
ynamic (MHD)-like simulations in stars is a difficult task, where
he step from 2D to 3D simulations is far from trivial. 

The internal magnetic field evolution of isolated NSs has been
argely explored in 2D simulations (Pons & Geppert 2007 ), later
oupled to the temperature evolution (Aguilera, Pons & Miralles
008 ; Pons, Miralles & Geppert 2009 ; Vigan ̀o, Pons & Miralles 2012 ;
igan ̀o et al. 2021 ). The models successfully explained the general
roperties of the isolated NS population (Vigan ̀o & Pons 2012 ; Pons,
igan ̀o & Rea 2013 ; Vigan ̀o et al. 2013 ; Gull ́on et al. 2014 , 2015 ). Re-
ent efforts were devoted to investigate the magnetic evolution with-
ut the restrictions of axial symmetry. Wood & Hollerbach ( 2015 )
nd Gourgouliatos, Wood & Hollerbach ( 2016 ) presented the first 3D
imulations of crustal-confined fields, using a pseudo-spectral code,
dapted from the geo-dynamo code PAR OD Y (Dormy, Cardin & Jault
998 ) to the NS scenario. These simulations sho w ne w dynamics
 E-mail: c.dehman@csic.es 
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Pub
nd the creation of long-living magnetic structures at a wide range
f spatial scales. Even using initial axisymmetric conditions, the
rowth of initially tiny perturbations breaks the symmetry and non-
xisymmetric modes quickly grow (Gourgouliatos & Pons 2020 ).
hese have typical length scales of the order of the crust thickness. 
Generally speaking, for high enough magnetic fields ( B � 10 14 

), the Hall cascade keeps transferring energy to small scales
Gourgouliatos et al. 2016 ), which in turn enhances Ohmic dis-
ipation and eventually keeps the star hot and X-ray visible for
onger time-scales, as seen in 2D simulations (Vigan ̀o et al. 2013 ).
nother interesting result is the formation of magnetic spots on the

urface of NS (Gourgouliatos & Hollerbach 2018 ), using extreme
nitial configurations previously explored in 2D (Geppert & Vigan ̀o
014 ). Very recently, De Grandis et al. ( 2020 ) presented the first
D magnetothermal evolution code with increasing physical self-
onsistency, applied to different subclasses of NSs (De Grandis et al.
021 ; Igoshev et al. 2021a , b ). See also Pons & Vigan ̀o ( 2019 ) for a
e vie w of magnetothermal evolution models. 

Classically there are several approaches to the problem: pseu-
ospectral methods which use spherical coordinates; finite vol-
me/finite difference schemes which prefer Cartesian coordinates
o a v oid difficulties with the axis (star -in-a-box); or using a restricted
rid that does not include the axis or the central region of the star.
o we v er, in man y cases none of these techniques is an optimal
© 2022 The Author(s) 
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hoice for several reasons. First, fields and physical quantities usually 
ary more rapidly in the radial direction, so it is more convenient
o distinguish the radial coordinate separated from the other two 
oordinates. Secondly, the surface is spherical (possible deviations 
rom sphericity are much smaller than any other rele v ant scale here),
nd its description in Cartesian coordinates is not convenient, since 
his choice implies a much higher computational cost, compared 
o systems of coordinates that include a radial direction. This is
ecause, on one side, in order to solve the strong radial gradients,
ne needs to refine all directions; on the other side, the discretization
f the spherical boundaries on to the Cartesian grid introduces more 
purious noise, leading to artificial modes and partially curable by 
ncreasing the resolution (see Appendix A of Vigan ̀o et al. ( 2021 ) for

ore details). One natural choice would then be to use the spherical
oordinates, as in two dimensions. Ho we ver, the coordinate system
oes not behave regularly on the axis, resulting in a number of
sometimes compelling) numerical limitations. 

Here we employ the cubed-sphere coordinates, originally intro- 
uced by Ronchi, Iacono & Paolucci ( 1996 ). Codes based on such
 grid have been used to simulate many physical scenarios, such 
s: general circulation models for Earth or planets (Breitkreuz et al. 
018 ; Ding & Wordsworth 2019 ), general relativity (Lehner, Reula &
iglio 2005 ; Carrasco, Palenzuela & Reula 2018 ; H ́ebert, Kidder &
eukolsky 2018 ; Carrasco et al. 2019 ), MHD accretion (Koldoba 
t al. 2002 ; Fragile et al. 2009 ; Hossein Nouri et al. 2018 ), solar
ind (Wang et al. 2019 ), seismic waves (van Driel, Kemper & Boehm
021 ), or dynamo in a shell (Yin et al. 2022 ). In this paper, we use this
eculiar coordinate system, adapted to the Schwarschild metric, to 
evelop a new code designed to handle the Hall term in the induction
quation for low physical resistivity. 

We introduce MATINS a new 3D code for MAgneto-Thermal 
volution in Isolated Neutron Stars based on a finite-volume scheme. 
n this work, we only present the magnetic evolution part, considering 
rustal-confined magnetic fields (thus neglecting the core). As a first 
tep, we evolve the crustal temperature with a simplified treatment, 
dopted from Yakovlev et al. ( 2011 ). This is at contrast with the
oupled thermal and magnetic ev olution, b ut with a simplified mi-
rophysical prescription described in the PAR OD Y -based published 
orks (De Grandis et al. 2020 , 2021 ; Igoshev et al. 2021a , b ).
ompared to those studies, MATINS has some distinctive features: 

i) the use of the most recent temperature-dependent microphysical 
alculations, (ii) the use of a star structure coming from a realistic
quation of state (EOS) and the inclusion of the corresponding 
elativistic factors in the evolution equations, (iii) the use of finite- 
olume numerical schemes discretized o v er a cubed-sphere grid. 

More specifically, we implement the state-of-the-art calculations 
or the temperature-dependent electrical conductivity at each point 
f the star using Potekhin’s public codes 1 (Potekhin, Pons & Page 
015 ). We build the background NS model using different models 
f EOS at zero temperature, taken from the online public data base
ompOSE 

2 (CompStar Online Supernovae Equations of State). In 
articular, here we will show results that employ a Skyrme-type 
odel of EOS, SLy4 (Douchin & Haensel 2001 ). Here we will

onsider only one model, leaving a different choice of EOSs and 
asses for future studies. 
This paper is structured as follows. In Section 2 , we briefly

rescribe the NS model, the Hall induction equation, the cubed- 
phere formalism applied to a Schwarschild metric, and the 
 ht tp://www.ioffe.ru/ast ro/conduct /
 https:// compose.obspm.fr/ 
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I
e  
umerical scheme used in the 3D magnetic evolution code. 
n Section 3 , we display the inner and outer magnetic boundary
onditions used in this study. The numerical tests and the comparison
ith 2D axisymmetric models are presented in Section 4 . Finally,
e illustrate in Section 5 the results obtained considering different 
on-axisymmetric initial configurations. We conclude and state our 
uture lines of research in Section 6 . 

 T H E  CUBED  SPHERE  FORMALI SM  WITH  

H E  SCHWARZSCHI LD  I N T E R I O R  MET RIC  

.1 Background star’s structure 

ur aim is to study the global evolution of the magnetic field in
solated NSs, which are relativistic stars in which general relativity 
orrections are important. The structure is provided by the Tolman–
ppenheimer–Volkoff equations (Oppenheimer & Volkoff 1939 ) 
hich solve the hydrostatic equilibrium assuming a static interior 
chwarzschild metric 

 s 2 = −c 2 e 2 ν( r) d t 2 + e 2 λ( r) d r 2 + r 2 d �2 , (1) 

here e 2 ν( r ) is the lapse function that accounts for redshift corrections
nd it is determined by the equation 

d ν( r) 

d r 
= 

G 

c 2 

m ( r) 

r 2 

(
1 + 

4 πr 3 P 

C 

2 m ( r) 

)(
1 − 2 G 

c 2 

m ( r) 

r 

)−1 

, (2) 

ith the boundary condition e 2 ν( R ) = 1 − 2 GM / c 2 R at the stellar radius
 = R . G is the gravitational constant, c is the speed of light, m ( r ) is
he enclosed gravitational mass within radius r , P ( r ) is the pressure
rofile and it is determined by the Tolman–Oppenheimer–Volkoff 
quation and e λ( r ) = (1 − 2 Gm ( r )/ c 2 r ) −1/2 is the space curvature
actor. The relativistic length correction e λ( r ) is hereafter included in 
he definition of the line and surface elements of the integrals and in
he operators ∇ containing the radial deri v ati ves. 

We can either prescribe a simple shell, or obtain the NS structure
y using realistic EOS. In particular, we make use of the online public
ata base CompOSE, which allows one to interpolate the provided 
ables using different schemes to obtain the relevant quantities, 
elected by the user. 

By default, we build the background NS model using the Skyrme-
ype EOS at zero temperature, describing both the star crust and
he liquid core, based on the ef fecti ve nuclear interaction SLy4
Douchin & Haensel 2001 ). Considering the SLy4 EOS, we build
 NS model with a radius R � = 11.7 km and a mass of 1.4 M �. The
entral pressure is 1.36 × 10 35 in c.g.s unit. The solution of the TOV
quation determines, among other quantities, the electron number 
ensity profile and the composition, essential for our simulations. 
Our computational domain co v ers the range from R c = 10.9 km

o R = 11.6 km, i.e. from the crust-core interface up to a density ρ
10 10 g cm 

−3 , which we label as the crust −envelope interface. The
nv elope e xtends about 100 m more, through which the dif fusi vity
teeply increases. Therefore, the dynamical time-scales get very short 
nd computationally e xpensiv e to follow. The common assumption, 
hat we also follow, is to assume that anyway the currents can live
oo shortly in the envelope. Therefore, we take the crust −envelope
nterface as the numerical surface, R . 

.2 Patches and coordinates 

n the cubed sphere formalism originally introduced by Ronchi 
t al. ( 1996 ), one of the three coordinates is the radial direction,
MNRAS 518, 1222–1242 (2023) 
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ike in spherical coordinates: the volume is composed of multiple
adial layers. As shown in Fig. 1 , each layer is co v ered by six
on-o v erlapping patches, which are topologically identical. The
atches can be thought as the result of inflating the six faces of a
ube, until it reaches a spherical shape. Therefore, each patch is
ordered by four patches and is naturally described by two angular-
ike coordinates that play the same role of the spherical coordinates

and φ. Here we use the same notation of the original paper: the
atch coordinates are ξ and η, both in the range [ − π /4: π /4]. The
wo coordinates are orthogonal to the radial direction, but they are
on-orthogonal to each other, except at the patch centres. They cover
he two directions in the same way, i.e. the patch shape is invariant
or any n π /2 ( n integer) rotation around the centre of the patch. The
ransformation relations between the cubes sphere, spherical and
artesian coordinate systems are reported in Appendix A1 . 

.3 Metric 

e follow the same approach as in Ronchi et al. ( 1996 ), but using
chwarzschild interior metric solution of the TOV equation. We

ntroduce the auxiliary variables that will be used in our formalism 

X ≡ tan ( ξ ) , 

Y ≡ tan ( η) , 

δ ≡ 1 + X 

2 + Y 

2 , 

C ≡ (1 + X 

2 ) 1 / 2 ≡ 1 

cos ( ξ ) 
, 

 ≡ (1 + Y 

2 ) 1 / 2 ≡ 1 

cos ( η) 
. (3) 

he metric tensor has in all patches the same functional dependence
n the auxiliary variables: in the unit vector basis, it reads 
 

 

1 0 0 
0 1 − XY 

CD 

0 − XY 
CD 

1 

⎞ 

⎠ (4) 

Note that, since X and Y are defined differently in each patch, the
etric and its inverse are of course different. In all patches, the radial

ector ˆ e r is orthogonal to the plane formed by ˆ e ξ and ˆ e η unit vectors,
hich are not in general orthogonal to each other. 
Below, we will employ vectors using either their covariant compo-

ents, denoted by lower indices, or their contravariant components,
enoted by upper indices. Let us focus first on the geometrical
lements. The contravariant components of the infinitesimal length
lement 3 at a given position { r , ξ , η} are 

d l r ( r) = e λ( r) d r, 

 l ξ ( r, ξ, η) = 

2 rC 

2 D 

δ
d ξ, 

 l η( r, ξ, η) = 

2 rCD 

2 

δ
d η. (5) 

e define the covariant components of the surface elements in terms
f the contravariant length element: 

 S r ( r, ξ, η) = 

4 r 2 

3 / 2 
C 

2 D 

2 d ηd ξ, 
NRAS 518, 1222–1242 (2023) 

δ

 Note that the factor two difference with respect to Ronchi et al. ( 1996 ) arises 
ecause the geometrical elements used in the circulation extend twice the size 
f the cell (once per each side around a central point, see as an example the 
ed solid lines in Fig. 2 ). 

(

 S ξ ( r, ξ, η) = 

2 re λ( r) D 

δ1 / 2 
d rd η, 

 S η( r, ξ, η) = 

2 re λ( r) C 

δ1 / 2 
d rd ξ. (6) 

or further details on the deri v ation of equation ( 6 ) we refer
o the Appendix, in particular equations ( A16 )–( A17 ). Last, the
nfinitesimal volume element is obtained by doing the mixed product
etween the three geometrical lengths: 

 V ( r, ξ, η) = e λ( r) 4 r 
2 C 

2 D 

2 

δ3 / 2 
d rd ξd η. (7) 

.4 Induction equation in neutron star crust 

e study the non-linear evolution of magnetic fields in NS crusts
ith special attention to the influence of the Hall drift. The evolution
f magnetic fields in the crust of an NS is go v erned by the induction
quation, in short form: 

∂ B 

∂t 
= −c ∇ × (

e ν E 

)
. (8) 

For our purposes (magnetic field evolution in an NS crust), the
lectric field resulting from a generalized Ohm’s law, will be given
y (Pons & Vigan ̀o 2019 ): 

E = ηb 

(
J + R m 

J × B 

B 

)
, (9) 

here ηb = 

c 2 

4 πσe 
is the temperature- and density-dependent magnetic

if fusi vity, σ e is the electric conductivity, and R m 

= 

f h B 

ηb 
is the so-

alled magnetic Reynolds number or magnetization parameter, with
 h = 

c 
4 πen e 

is the Hall-prefactor. Here B = | B | , e is the elementary
lectric charge and n e is the electron number density. We have defined
he electric current, J by 

J = e −ν c 

4 π
∇ × ( e ν B ) , (10) 

.e. with the ef fecti ve current being e −ν∇ × ( e ν B ) . 
The first term is the Ohmic (dissipative) term and the second is the

on-linear Hall term which is the effect of the Lorentz force acting on
he electrons. The magnetic Reynolds number is an indicator of the
elative importance between the Ohmic and the Hall terms. The Hall
rift dominates when the magnetic Reynolds number greatly exceeds
nity, and in this case the purely parabolic diffusion equation changes
ts character to hyperbolic. 

The curl operator, needed to compute J and to advance B , can be
ritten in the following concise form in our non-orthogonal metric

applied to a given vector A ): 

 ∇ × A ) = 

1 √ 

g d l r d l ξ d l η

∣∣∣∣∣∣
d l r e r d l ξ e ξ d l ηe η
d r ∂ 

∂r 
d ξ ∂ 

∂ξ
d η ∂ 

∂η

d l r A · e r d l ξ A · e ξ d l η A · e η

∣∣∣∣∣∣, (11) 

here 
√ 

g = 

√ 

δ/CD. Explicitly, the components read: 

∇ × A 

)r = 

d ξ√ 

g d l ξ d l η

(
∂ 

∂ξ

(
d l η A · e η

) − d η

d ξ

∂ 

∂η

(
d l ξ A · e ξ

))

= 

d ξ

d S r 

(
∂ 

∂ξ

(
d l ηA 

η

)
− Y 

D 

∂ 

∂ξ

(
X 

C 

d l ηA 

ξ

)

−d η

d ξ

∂ 

∂η

(
d l ξA 

ξ

)
+ 

Xd η

Cd ξ

∂ 

∂η

(
Y 

D 

d l ξA 

η

))
(12) 
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∇ × A 

)ξ = 

d r √ 

g d l r d l η

(
d η

d r 

∂ 

∂η

(
d l r A · e r 

) − ∂ 

∂r 

(
d l η A · e η

))

= 

d r 

d S ξ

(
d l r 

d η

d r 

∂A 

r 

∂η
− ∂ 

∂r 

(
d l ηA 

η
)

+ 

XY 

CD 

∂ 

∂r 

(
d l ηA 

ξ
))

(13) 

∇ × A 

)η = 

d r √ 

g d l r d l ξ

(
∂ 

∂r 

(
d l ξ A · e ξ

) − d ξ

d r 

∂ 

∂ξ

(
d l r A · e r 

))

= 

d r 

d S η

(
∂ 

∂r 

(
d l ξA 

ξ
) − XY 

CD 

∂ 

∂r 

(
d l ξA 

η
)

−d l r 
d ξ

d r 

∂A 

r 

∂ξ

)
, (14) 

here in the second equi v alences we apply the Stokes theorem on
n infinitesimal surface. 

F or an y field, for output and plotting purposes we calculate
he θ and φ components, using the transformations detailed in 
ppendix A1 . 

.5 Numerical schemes and computational features 

e use an equally spaced grid in the two angular coordinates of each
atch (steps d ξ = d η), and a uniform step in the radial coordinate,
 r , fine enough to sample the large density and field gradients in the
rust. 

To evolve the magnetic field, we discretize the induction equa- 
ion in the cubed-sphere coordinates, in our shell domain. Using the 
eometrical elements of Section 2.3 , we calculate the equations ( 12 )–
 14 ) in our discretized scheme. We compute the circulation as a
econd-order accurate line integral along the edges of a cell face and
ivide it by the corresponding area, like in our previous 2D codes
Vigan ̀o et al. 2012 ; Vigan ̀o et al. 2021 ). The surface around which
he circulation is performed includes the area of the four grid cells
urrounding each point (therefore, all geometrical elements related to 
 given point extend one cell size at both sides along the considered
irection). A detailed sketch of the circulation is illustrated in red 
n the left-hand side of Fig. 2 . As noted in previous works (see
ppendix A of Vigan ̀o et al. 2019 ), rising the accuracy of the line

ntegral (for instance, considering the values at the corners of the face)
ends to create more numerical instabilities. Therefore, we stick to 
his second-order recipe. 

To advance in time, we use an explicit fourth-order Runge–
utta scheme. Other Runge–Kutta schemes are implemented, but 

he results are not shown here. In explicit algorithms, the stability 
f the method is limited by the Courant condition, which limits the
ime-step to ensure that the f astest w ave cannot travel more than one
ell length in each time-step. An estimate of the maximum allowed 
ime-step for this non-linear system can be written as: 

 t h = k c min 

[
( �l) 2 

f h B + η

]
points 

, (15) 

here k c is the Courant number and it is a factor < 1 (typically 10 −2 

10 −1 ), and ( � l ) 2 = [(d l r ) −2 + (d l ξ ) −2 + (d l η) −2 ] −1 represents
he square of the shortest resolved length scale, and the minimum is
alculated o v er all the numerical points of the domain. 

The numerical stability of the magnetic evolution in the two codes 
 MATINS and the 2D), for a given initial setup, seems comparable:
umerical instabilities start to appear at late times, when the star
ools down and consequently the dynamics become largely Hall- 
ominated (see Vigan ̀o et al. 2021 for a more detailed discussion).
his similarity with the 2D is surprising: here we do not employ
he upwind-like scheme, the Burgers-like treatment for the toroidal 
eld and the hyper-resistivity, which were all helping the numerical 
tability in 2D. As discussed in Vigan ̀o et al. ( 2012 , 2021 ), in
D all of them can be formulated and implemented in a compact
ay, without violating the field divergence and exploiting the axial 

ymmetry, which allows a separation by components of the toroidal 
nd poloidal field. In 3D, applying the same schemes is not possible
y construction, and analogous more sophisticated ways to stabilize 
he code have not been developed so far. 

MATINS is written in Fortran90 in a modular way, with a logic
nd flow substantially similar to its 2D (i.e. axisymmetric) version 
see Vigan ̀o et al. 2021 ). The microphysics and star’s structure
odules, with different choices of EOSs, are indeed the same as

here. 
The code uses OpenMP to optimize the main loops. The compu-

ation bottlenecks are represented by the spherical harmonic decom- 
osition needed in the boundary conditions and by the calculation of
he circulation (done twice per each time substep). Among the two,
he former takes more weight as the resolution increases. The code
s faster when compiled with Intel compilers, compared to GNU. To
ive an idea, for the magnetic evolution simulations starting with 
10 14 –10 15 G, here presented, and the typical resolution used, e.g.
 r = 40 and N ξ = N η = 43 per patch, the total computational time

or a run of 100 kyr is of about 7 d using six i9-10900 processors
2.80 GHz). For such a simulation, about ∼2.5 million iterations 
re needed to reach 100 kyr of evolution and it takes about 0.24 s
er iteration. The computational time goes up to 16 d if one utilizes
ne processor instead of six (i.e. scalability efficiency 16/(7 × 6) 

0.4). Due to the relati vely lo w number of points ( < 10 6 in total
or the resolutions used here), the scalability with openMP is decent
nly up to 6 processors. Therefore, we usually use six processors, a
umber that also takes advantage of the division by six patches. The
omputational cost of the simulations is set by the large number
f iterations needed ( O (10 6 ) for 100 kyr at the resolution here
mployed), which is in turn limited by the maximum time-step 
llowed, equation ( 15 ). The latter scales with the square of the
esolution � l : our computational cost rises then with ∼( � l ) 5 . 

Further optimization of the code is still possible and would 
otentially impro v e the performance, but will not affect the physical
esults shown here. 

.6 Treatment of the edges between patches 

hen computing the curl operator introduced in equations ( 12 )–( 14 )
t the edges (corners) of the patch, one needs information about the
alues of the functions in some points which lie in the coordinate
ystem(s) of the neighbouring patch(es). A way to deal with this issue
s to extend one layer of ghost cells in each direction, for each patch.
he field components at the ghost cells are obtained by interpolating

he vectors in the neighbouring patch coordinates. 
Fig. 2 illustrates the mapping between two contiguous patches. 

sing the same regular grid size in both patches, we notice that
he ghost vertical grid line in one patch (e.g. patch I in Fig. 2
vertical dotted red line)) coincides with the interior vertical grid 
ine of the contiguous one (e.g. patch II in Fig. 2 , blue vertical line).
onsequently, only a 1D interpolation along the vertical η direction 
ill be required. Note that, since ξ and η have the same grid spacing
 ξ = d η = � and the same range [ − π /4; π /4], this idea can be
pplied in both vertical and horizontal directions. 

We now formalize the mapping of coordinates between two 
ifferent patches. Let us consider a point close to the edge between
MNRAS 518, 1222–1242 (2023) 
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M

Figure 1. Exploded, cubed view of the patches (Ronchi et al. 1996 ). Each patch is identical and is described by the coordinates ξ and η, both spanning 
the range [ − π /4; π /4]. In the exploded view ξ and η grow to the right and upward, respectively, for all patches (only patch I is explicitly drawn 
here). Arrows identify the 12 edges between patches. The coordinate values ( ξ , η) of the corners for each of these patches are written in the bottom part 
as well. 

t  

c  

u  

c  

t  

m  

g

q

w  

p  

m  

w
1  

T

q

I  

e  

d  

p  

w
 

s  

i

W

A  

c  

N  

p
 

c

A

w  

s  

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/1/1222/6748229 by U
niversidad de Alicante user on 29 N

ovem
ber 2022
wo patches. We shall call, for each patch, p the value of the point
oordinate parallel to the interface, and q the one pseudoperpendic-
lar to it (since the coordinates are not orthogonal except along the
entral axes of each patch). We shall use the superscript o to indicate
he original coordinate system (for which we know ( p o , q o )). The

apping of the point in the adjacent patch (superscript m ) is then
iven by 

 

m = sgn ( q o edge ) q 
◦ − π

2 
(16) 

tan ( p 

m ) = sgn ( q o edge ) 
tan ( p 

o ) 

tan ( q o ) 
, (17) 

here sgn ( q o edge ) is here used to identify the two edges in the original
atch coordinate system, q o edge = ±π/ 4, respectively. In the case of
apping ghost points to the adjacent patch where they fall into,
e have a set of points with different { p o } = { − π /4 + ( i /( N −
)) π /2 } ( i = 0, N − 1) and the same q o = sgn ( q o edge )( π/ 4 + � ).
herefore: 

 

m = −sgn ( q o edge ) 
(π

4 
− � 

)
(18) 

tan ( p 

m ) = 

tan ( p 

o ) 

tan 
(

π + � 

) . (19) 
NRAS 518, 1222–1242 (2023) 

4 
n Table 1 , we provide the correspondence of the direction for
ach edge, which involves two patches. The sign indicates the
irection of growth of the coordinate: if they have the same (op-
osite) sign, the two coordinates p increase in the same (opposite)
ay. 
Once the position of the ghost points is determined, we define a

et of relative distances to the first neighbours, needed to linearly
nterpolate the vectors: 

 = 

p 

m − p 

o 

� 

∈ [0 : 1] . (20) 

t the centre of the edge, the distance W is zero since the ghost point
oincides with a point of the adjacent patch (point ‘O’ of Fig. 2 ).
ote that the set of distances is uni versal, v alid for any pair of
atches. 
The vector components at the ghost points are calculated in the

oordinate system of the adjacent patch as follows: 

 

r,ξ,η
gAdj = F 1 r,ξ,η

Adj 

(
1 − W 

) + F 2 r,ξ,η
Adj W , (21) 

here F 1 r,ξ,η
Adj and F 2 r,ξ,η

Adj are the vector components at the corre-
ponding grid points in the adjacent patch surrounding the ghost
oint. Importantly, the angular components of the vector A , need
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Figure 2. Schematic view of two contiguous equatorial blocks, e.g. patch I 
(black) and patch II (blue), and the ghosts cells of patch I (endpoints of the 
red dashes). The view is centred on the common vertical boundary line. The 
pseudo-horizontal coordinates ξ of the ghost points of one grid, i.e. patch 
I, coincide with the second points along the ξ coordinates of the last one 
interior grid points of the contiguous block, i.e. patch II. The ghost points are 
traced by the red line, and the values of the fields along the pseudo-vertical 
coordinate, η, are obtained by interpolations among the adjacent patch points 
(blue letters). Note that for other pairs of patches, the correspondence of 
coordinates may be less trivial (see Table 1 ). A sketch of a centred discretized 
circulation which extends twice the size of the cell (once per each side around 
a central point ( i , j , k )) is displayed on the left-hand side of this plot, in red. 
The circulation shown here is applied to calculate the radial component of 
the curl operator for a given vector A, i.e. ( ∇ × A ) r . 

Table 1. Coordinates at the 12 edges . Identification of coordinates at the 
twelve edges of the cubed sphere: pair of patch numbers, pair of values 
of the pseudoperpendicular coordinate q identifying the interface, parallel 
coordinate p (the one to be mapped from one patch to the other when ghost 
points are defined). 

edge patches q ’s p ’s 

1 I-II ξ I = π /4, ξ II = −π /4 ηI , ηII 

2 II-III ξ II = π /4, ξ III = −π /4 ηII , ηIII 

3 III-IV ξ III = π /4, ξ IV = −π /4 ηIII , ηIV 

4 IV-I ξ IV = π /4, ξ I = −π /4 ηIV , ηI 

5 I-V ηI = π /4, ηV = −π /4 ξ I , ξV 

6 II-V ηII = π /4, ξV = π /4 ξ II , ηV 

7 III-V ηIII = π /4, ηV = π /4 ξ III , −ξV 

8 IV-V ηIV = π /4, ξV = −π /4 ξ IV , −ηV 

9 I-VI ηI = −π /4, ηVI = π /4 ξ I , ξVI 

10 II-VI ηII = −π /4, ξVI = π /4 ξ II , −ηVI 

11 III-VI ηIII = −π /4, ηVI = −π /4 ξ III , −ξVI 

12 IV-VI ηIV = −π /4, ξVI = −π /4 ξ IV , ηVI 
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Figure 3. Difference between fixing the odd–even decoupling (equation 22 , 
solid line) and not (dots), for a representative evolved radial profile of a 
magnetic field component at a given angle. As a representative example, we 
show B 

θ in the upper right-hand corner of patch II. 
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 change of coordinates from the adjacent to the original patch by
sing the Jacobians detailed in Appendix A2 : 

 

ξ = JAC (1 , 1) A 

ξ
gAdj + JAC (1 , 2) A 

η
gAdj 

 

η = JAC (2 , 1) A 

ξ
gAdj + JAC (2 , 2) A 

η
gAdj . 

t the edges (corners) between two (three) contiguous patches, there 
re two (three) coexisting coordinate systems, each one assigning 
lightly different values to the vector components. To guarantee 
dentical field components at the egdes/corners between the patches, 
nd to reduce numerical noise, after each time-step we average 
he values of the electric currents and electric fields obtained from
ach patch. The appropriate change of coordinates is needed for the 
ngular components to perform such a correction. 
 B O U N D  A R  Y  C O N D I T I O N S  

.1 Inner boundary conditions 

n this paper, we focus on the magnetic evolution in the crust. For
implicity, the inner boundary conditions are imposed by demanding 
hat the normal (radial) component of the magnetic field has to vanish
t r = R c . Physically, this mimics the transition from normal to
uperconducting matter. We will also impose the vanishing of the 
angential components of the electric field to a v oid the formation of
urrent sheets. Under such assumptions, the Poynting flux at r = R c 

s zero and no energy is allowed to flow into/from the core. 
We note that, when using a second-order central difference scheme 

or the second deri v ati ve of a function, combined with our choice of
he inner boundary conditions causes a numerical problem known 
s odd–even decoupling or checkerboard oscillations. This results in 
he numerical decoupling of two slightly different solutions, one for 
he odd grid points, and another one for the even grid points. In order
o relieve this, we increase the radial coupling among the nearest
eighbours (found at a distance d r ), as follows: 

 

ξ ( R c ) = 

1 

2 
E 

ξ ( R c + d r) , 

 

η( R c ) = 

1 

2 
E 

η( R c + d r) , 

 

ξ ( R c − d r) = 

R c 

R c − d r 
B 

ξ ( R c ) , 

 

η( R c − d r) = 

R c 

R c − d r 
B 

η( R c ) . (22) 

n the equations abo v e, we omit the angular dimensions for clarity.
his choice reduces the tangential current at the crust-core interface 
nd impro v es the stability during the evolution. 

In Fig. 3 , we illustrate a representative case of the difference
n radial profile of a component with (solid line) and without the
rescription abo v e (dots). 

.2 Outer boundary conditions: potential field 

he magnetosphere of an NS plays an important role in explaining
e veral observ ational properties (Beloborodov 2009 ; Akg ̈un et al.
017 ). Connecting the magnetic evolution in the interior of the star
MNRAS 518, 1222–1242 (2023) 
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ith its magnetosphere is outside the scope of this paper. If surface
urrents sheets are excluded, all components of the magnetic field
re continuous through the outer boundary. 

We impose an external potential (current free) solution for the
agnetic field at the surface of the star, determined by ∇ × B =
 and ∇ · B = 0. The magnetic field can be then expressed as the
radient of the magnetostatic potential χm that satisfies the Laplace
quation: 

B = ∇ χm 

, 

 

2 χm 

= 0 . (23) 

he spherical harmonics expansion of the scalar potential χm reads: 

m 

= −B 0 R 

∞ ∑ 

l= 0 

m =+ l ∑ 

m =−l 

Y lm 

( θ, φ) 

(
b m 

l 

(
R 

r 

)l+ 1 

+ c m 

l 

(
r 

R 

)l )
, (24) 

here B 0 is a normalization, b m 

l corresponds to the weight of the
ultipoles, and Y lm are the spherical harmonics. In this study, we

se the Y lm decomposition introduced by Blanco, Fl ́orez & Bermejo
 1997 ), since we are interested in working with the real set of
pherical harmonics (Laplace spherical harmonics). The latter forms
n orthonormal and complete set. One can choose real functions by
ombining complex conjugate functions, corresponding to opposite
alues of m . Note that we exclude l = 0 since it corresponds to a
agnetic monopole and it violates ∇ · B = 0. The dimension-less
eights b m 

l and c m 

l are associated to l and m multipoles of two
ranches of solutions. The second branch, ∝ ( r / R ) l , diverges for a
omain extending to r → ∞ , like the magnetosphere, therefore we
et c m 

l = 0. 
The normal components of the magnetic field B 

r are evolving and
nown at the surface of the star at each time-step. But to impose
otential boundary conditions we need to determine the angular
omponents of the magnetic field at the surface and one cell abo v e
he surface of the star. We proceed as follows. 

Continuity of B 

r across the surface allows one to write it in terms
f the magnetostatic potential as: 

 

r = 

1 

e λ( r) 

∂χm 

∂r 
= 

B 0 

e λ( r) 

∞ ∑ 

l= 0 

m =+ l ∑ 

m =−l 

( l + 1) Y lm 

( θ, φ) b m 

l 

(
R 

r 

)l+ 2 

. (25) 

Then, we e v aluate the weights of the multipoles b m 

l by applying
he orthogonality properties of spherical harmonics to equation ( 25 ),
btaining: 

 

m 

l = 

e λ( R) 

B 0 ( l + 1) 

∫ 
d S r 

r 2 
B 

r Y lm 

( θ, φ) . (26) 

rom this, the angular components of the magnetic field for r ≥ R
an be e v aluated: 

 

θ = −B 0 

∞ ∑ 

l= 0 

l ∑ 

m =−l 

b m 

l 

(
R 

r 

)l+ 2 
∂Y lm 

( θ, φ) 

∂θ
. (27) 

 

φ = − B 0 

s i n ( θ ) 

∞ ∑ 

l= 0 

l ∑ 

m =−l 

b m 

l 

(
R 

r 

)l+ 2 
∂Y lm 

θ, φ

∂φ
, (28) 

hich are then converted into the B 

ξ and B 

η components in the code.
Finally, analogously to what is described for the inner boundary

Section 3.1 ), we prevent the radial odd–even decoupling at the
urface by setting the values of the tangential components of the
agnetic field as the average between the values one point abo v e

nd below the surface. 
NRAS 518, 1222–1242 (2023) 
 N U M E R I C A L  TESTS  

.1 Diagnostics 

 necessary test for any numerical code is to check the instantaneous
local and global) energy balance. Any type of numerical instability
sually results in the violation of the energy conservation, or any
ther physical constraint (the divergence condition). Therefore a
areful monitoring of the energy balance is performed. The magnetic
nergy balance equation for Hall eMHD can be expressed as : 

∂ 

∂t 

(
e ν

B 

2 

8 π

)
= −e 2 νQ j − ∇ · (e 2 ν S 

)
, (29) 

here Q j = 4 πηb J 2 / c 2 is the Joule dissipation rate and S = c E ×
B / 4 π is the Poynting vector. 

Integrating equation ( 29 ) over the whole volume of the numerical
omain, we obtain the balance between the time variation of the
otal magnetic energy E mag = 

∫ 
V ( e νB 

2 /8 π )d V , the Joule dissipation
ate Q tot = 

∫ 
V e 2 νQ j d V , and the Poynting flux through the boundaries

 tot = 

∫ 
S 
e 2 ν S · ˆ n d S. In our case, the boundaries are the star surface

nd the crust–core interface, so that S tot is given by the integration of
 r o v er them. Thus, the volume-integrated energy balance is 

d 

d t 
E mag + Q tot + S tot = 0 . (30) 

We also calculate the local magnetic field divergence in the cubed
phere coordinates by using Gauss’ theorem: 

 · B = 

1 

d V 

[
∂ 

∂r 
(d S r B 

r ) + 

∂ 

∂ξ
(d S ξB 

ξ ) + 

∂ 

∂η
(d S ηB 

η) 

]
. (31) 

tarting from an initial divergence-free magnetic field (see Sec-
ion B2 for more details), we monitor that indeed the divergence
f the magnetic field does not grow in time abo v e some tolerable
rror. To measure this, we compare the volume integral of ( ∇ · B ) 2 

 d = 

∫ (∇ · B 

)2 
d V (32) 

o a physical quantity with the same units and scaling, e.g. the
ntegrated values of the square of the effective current 

 J = 

∫ 
[ ∇ × ( e ν B )] 2 d V , (33) 

r to ( B / < d l > ) 2 , where < d l > is the geometrical mean of the cell’s
dge lengths (see also Vigan ̀o et al. 2019 for a related discussion).
e verify that during the evolution, the divergence of the magnetic

eld al w ays k eeps several orders of magnitude smaller than the other
uantities, throughout the star. 
A detailed analysis of the spectral energy distribution is performed

n this study. The explicit calculation of this quantity is done using the
oloidal and toroidal decomposition of the magnetic field described
see Appendix B1 ). The magnetic energy content in each mode,
ncluding the relativistic corrections, can be written as 

 lm 

= 

1 

8 π

∫ 
e λ+ νd r l ( l + 1) 

[
l ( l + 1) 

r 2 
� 

2 
lm 

+ 

(
� 

′ 
lm 

)2 + � 

2 
lm 

]
, (34) 

here � 

′ 
lm 

is the radial deri v ati v e of � lm , e xplicitly giv en by
quation ( B5 ). The first two terms in equation ( 34 ) account for the
oloidal magnetic energy and the last term accounts for the toroidal
nergy. The total energy density is simply 

∑ 

lm E lm . 

.2 The purely resisti v e benchmark 

 classical benchmark test that admits analytical solutions to com-
are with is the evolution of axisymmetric modes under Ohmic
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Figure 4. Bessel test: radial profiles of the magnetic field components at different Ohmic time-scales, with τ d = 0.25 Myr. A comparison of the numerical 
(solid lines) and the analytical (diamonds) solutions for a model with wave-number in unit length, α = 2 km 

−1 , in a spherical shell of radius [ R c = 5: R = 10] 
km. LHS panel: B 

r / B 0 radial profile at the north pole of the star. Central panel: B 

θ / B 0 radial profile at the upper right-hand corner of patch 2 (equatorial patch). 
Right-hand panel: B 

φ / B 0 radial profile at the bottom left border of patch 2, with B 0 a normalization factor. 
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magnetic field. We hav e v erified that the maximum absolute L 2 error is of the 
same order as the average one. The values are much smaller than the mean 
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issipation only (zero magnetic Reynolds number) and constant 
agnetic dif fusi vity ηb . The induction equation in this limit reads 

∂ B 

∂t 
= −ηb ∇ × ( ∇ × B ) . (35) 

he Ohmic eigenmodes consist of force-free solutions satisfying 
 × B = αB , where α is a constant parameter. Then, we have 

∂ B 

∂t 
= −ηb α

2 B , (36) 

hich shows that each component of the magnetic field decays 
xponentially with the same diffusion time-scale τ d = 1/( ηb α

2 ). 

B ( t) = e −t/ τd B ( t = 0) . (37) 

ote that the evolution of each component is decoupled in this case.
 solution of equation ( 36 ) is the spherical Bessel functions. For
ore details, we refer the reader to section 5.4 of Pons & Vigan ̀o

 2019 ). 
Considering the spherical Bessel functions as initial conditions, 

nd imposing the analytical solutions for B 

r , B 

ξ , and B 

η as boundary
onditions, we follow the evolution of the modes during several 
iffusion time-scales. 
Fig. 4 compares the numerical (solid lines) and analytical (dia- 
onds) solutions of the magnetic field components for a magnetic 
eld of order one, at different diffusion time-scales, for a model 
ith α = 2 km 

−1 , in a spherical shell defined by r ∈ [5: 10] km,
ith a resolution of N r = 40 and N ξ = N η = 43 points per patch

n the cubed-sphere coordinates. One can notice that the magnetic 
eld has decreased below the visible scale in the figure around 4 τ d .
oreo v er the analytical and numerical results are indistinguishable 

n the graphic. 
To quantify the deviation, we evaluate the average L 

2 absolute 
rror, in terms of deviation from the analytical solution, shown in 
ig. 5 for B 

r (dots), B 

θ (dash-dotted lines), and B 

φ (solid lines). The
ngular field components show a higher error than the radial one. 
hat is due to the patchy grid employed. The L 

2 error saturates after
ne diffusion time-scale for the two angular field components, and 
fter two diffusion time-scales for the radial one. We have checked 
hat by varying the resolution, the errors scale with � 

2 , validating
hat the method is of second order. 

.3 A comparison between the 2D and the 3D magnetic codes 

or the general case including the Hall term and with variable 
if fusi vity and electron density, no analytical solution is available. 
o we v er, since e xtensiv e results from 2D simulations are available,
 detailed comparison of the 3D magnetic code presented here and
he 2D code (Vigan ̀o et al. 2012 ; Vigan ̀o et al. 2021 ) developed by
ur group, helps us to probe the validity of the results of the 3D code.
For this comparative purpose, we employ analytical, fixed radial 

rofiles for the magnetic dif fusi vity ηb and the Hall prefactor f h , in
oth codes. For the Hall prefactor f h , we use the following fit adopted
rom Vigan ̀o et al. ( 2021 ) 

 h, fit = 0 . 011 e k( ̃ r − ˜ R c ) b 
[

km 

2 

Myr 10 12 G 

]
, (38) 

here k = 10, b = 1.8, ˜ r and ˜ R c are r and R c given in km. This
adial profile exhibits a super-exponential rise of about three orders 
f magnitude throughout the crust. 
For the magnetic dif fusi vity ηb , we use the analytical radial profile 

b ( r) = 6 
( r − R c ) k 0 

( R − R c ) k 0 
+ 3 

( R − r) k 1 

( R − R c ) k 1 

[
km 

2 

Myr 

]
, (39) 

ith k 0 = 3.5 and k 1 = 4. 
The initial magnetic field is an axisymmetric crustal-confined field 

ith a poloidal dipole of 10 14 G at the polar surface and a toroidal
MNRAS 518, 1222–1242 (2023) 
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M

Figure 6. Radial profiles of the magnetic field components. On the left, we show the radial profile of the normal component of the magnetic field B 

r at the 
north pole of the star. In the centre and on the right, we illustrate the radial profiles of the two angular components of the magnetic field B 

θ and B 

φ , respectively, 
at the equator of the star. The solid lines correspond to the results of the 3D code, whereas the diamonds correspond to those of the 2D code. Different colours 
correspond to different evolution time. 

Figure 7. Evolution of the magnetic energy spectrum as a function of m 

(summed o v er all l ), for the axisymmetric case. We show t = 0 (in black) and 
t = 80 kyr (in yellow). Throughout the evolution, the power contained in all 
m �= 0 modes never grows abo v e 10 −4 the power in the m = 0 mode. 
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omponent consisting of a sum of a quadrupole and an octupole with
 maximum value of 10 15 G. 

We use a grid resolution of N r = N ξ = N η = 30 per patch (meaning
1 points from pole to pole and 120 along the equator). A similar
esolution is used in the 2D code, e.g. N θ = 60 and N r = 30. 

The results of the comparison for an evolution up to t = 80 kyr
re displayed in Figs 6 , 7 , and 8 . The radial magnetic profiles for
he three components of the magnetic field are displayed in Fig. 6
t t = 0, 5, 10, 20, and 80 kyr: B 

r at the north pole in the left-hand
anel, B 

θ at the equator in the central panel, and B 

φ at the equator in
he right-hand panel. The 3D results are represented with solid lines,
hereas the diamonds correspond to the 2D results. Throughout the

volution, the maximum magnetic Reynolds number is much greater
han unity, e.g. R m ∼ 100. Therefore, the Hall term dominates in
he induction equation. The observed evolution is very similar. Local
ifferences in the values of the components are typically less than a
ew per cent, except for the radial component of the magnetic field
t late times, which are likely due to the slightly different numerical
mplementation of the inner and outer boundary condition used in
he two codes. 

An important point is assessing to which extent the 3D numerical
ode preserves axial symmetry. If we start with a pure m = 0
NRAS 518, 1222–1242 (2023) 
ode, one should expect that this symmetry is kept to some small
rror, during the whole evolution. To give a quantitative measure of
ossible deviations, we study the energy spectrum (equation 34 ) by
onitoring the evolution in time of each mode. 
In Fig. 7 , we plot in logarithmic scale the energy spectrum as a

unction of m ( E m ≡
∑ 

l E lm ) at t = 0 (in black) and after t = 80 kyr
in yellow). The spectral magnetic energy is concentrated at m = 0 as
xpected. The rest of the modes are zero to the round-off error, except
he modes with m = ±4, and higher harmonics, having anyway six
r seven orders of magnitude less energy than the main one. They
re caused by the discretization o v er the cubed-sphere grid, and in
articular by the four patches that co v er the tropical latitudes o v er the
ntire azimuthal direction. Their contribution to the energy spectrum
s negligible. We remark that this una v oidable error introduced by
he cubed-sphere grid is not increasing in time and it remains several
rders of magnitude smaller than the magnetic energy contained in
he m = 0 mode after 80 kyr of evolution. Moreover, it decreases for
igher resolution. 
In Fig. 8 , we show the different contributions to the total energy

alance as a function of time (left - hand panel), the energy stored in
he toroidal and poloidal components (central panel), and a measure
f the evolution of the divergence of the magnetic field (right-hand
anel). The solid lines correspond to 3D, whereas dashed lines to
D. The total energy is conserved somewhat better in the 3D code,
ithin ∼ 3 per cent in 3D and ∼ 15 per cent in 2D, after 80 kyr of

v olution. We attrib ute this minor differences in the energy balance
o the use of spherical coordinates in 2D, which may cause more
umerical errors close to the axis. 
As seen in the central panel, for this model, most of the magnetic

nergy is stored in the poloidal field while the toroidal field represents
15 per cent of the total magnetic energy at t = 0 and ∼ 34 per cent

t t = 80 kyr. The increase in the relative fraction of the toroidal
nergy is caused by the non-linear term, which results in some
edistribution of magnetic energy between poloidal and toroidal
omponents. 

In the right-hand panel, we compare the square of the divergence
f the magnetic field integrated in the star volume (equation 32 )
o the volume integrated J 2 (equation 33 ). Both quantities have the
ame units, i.e. erg cm 

−2 and the comparison is a good proxy for the
evel of conservation of the divergence constraint. The differences
etween the 2D and the 3D values of D d are most likely due
o the different coordinates employed. Nevertheless, D d is al w ays
everal orders of magnitude lower than D J and is nearly constant
n time. Generally speaking, we conclude that the results of the two
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Figure 8. The results of the comparison between the 2D (dashed lines) and the 3D (solid lines) codes up to t = 80 kyr. Left-hand panel: energy as a function 
of time. Energy balance in black, Joule dissipation in red, magnetic energy in blue and Poynting flux in yellow. Central panel: total magnetic energy in black, 
poloidal magnetic energy in blue, toroidal magnetic energy in red. Right-hand panel: D d in black and D J in blue (equation 32 and equation 33 , respectively). 
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odes agree within the expected grid/formalism-dependent numerical 
rrors. 

 RESULTS  

.1 Physical setup 

e now turn to the full problem: non-axisymmetric 3D simulations 
n a realistic NS crust, with a stratified electron number density and a
emperature-dependent resistivity. Although a detailed evolutionary 
odel requires the simultaneous numerical solution of the heat 

iffusion equation coupled to the 3D magnetic evolution, in this paper 
e use the analytical approximation for the isothermal redshfited 

emperature ( Te ν) evolution of Yakovlev et al. ( 2011 ), so that the
hysical temperature T reads: 

 ( t) = 3 . 45 × 10 8 K 

(
1 − 2 GM 

c 2 R � 

)

×
[

1 + 0 . 12 

(
R � 

10 km 

)2 ](
t c 

t 

)1 / 6 

e −ν, (40) 

here t c is some fiducial (normalization) time-scale. For our model, 
 = 1.4 M � and R � = 11.7 km and t c is set to the age of the Cas
 supernova remnant (330 yr). It has been shown that this time
ependence is accurate during the neutrino cooling stage (Yakovlev 
t al. 2011 ). These simplification will suffice for our purpose in this
ork. 
The electrical conductivity (needed to calculate ηb ) is calculated 

ocally at each time-step, considering the temperature, local density, 
nd composition. We use the same public code from Alexander 
otekhin 4 (Potekhin et al. 2015 ), which has been used in all previous
D simulations by our group. 

.2 Initial magnetic topology 

he magnetic field configuration of NSs at birth is largely unknown. 
ecent magnetohydrodynamic simulations of the magnetorotational 

nstability in core-collapse supernovae (Obergaulinger, Janka & Aloy 
014 ; Aloy & Obergaulinger 2021 ; Reboul-Salze et al. 2021 ) suggest
 complex picture, in which the magnetic energy of the proto-NS 

preads o v er a wide range of spatial scales. Such simulations find
hat most of the magnetic energy is contained in small or medium-
cale size magnetic structures, both for the toroidal and the poloidal 
 ht tp://www.ioffe.ru/ast ro/conduct /

m  

t
m

omponents. Note that this deviates substantially from the often- 
sed, simple dipole + twisted torus configurations inferred by MHD- 
quilibrium studies (Ciolfi & Rezzolla 2013 ). 

To assess the sensitivity of results to the uncertain initial condi-
ions, we have considered three different magnetic field topologies, 
ll confined to the crust (substantially similarly to Aguilera et al.
008 ). The details of the radial dependence and how to construct
 divergence-free magnetic field are given in Appendix B2 . The
umerical scheme maintains the local divergence up to machine 
rror, by construction. 

The different models studied in this section have an average initial
agnetic field of ∼10 14 G, corresponding to total magnetic energies 

f the order of ∼10 45 erg. They are summarized in Table 2 . Most of
he magnetic energy is contained in the toroidal component, except 
or the last model. They differ in the relative weights of multipoles
f the initial configuration. In the second and third models, the
emperature is fixed to 10 9 K and 2 × 10 8 K, respectively, instead of
volving it. Note in general that we choose arbitrary combinations of
 relatively small number of multipoles, in contrast with the expected 
mooth cascade o v er a wide range of them suggested by the abo v e-
entioned proto-NS configurations. The total evolution time for the 
rst three models of Table 2 , e.g. L5, L5-T1e9, and L5-T2e8, is
0 k yr. F or L1 model, the total evolution time is 85 kyr and for
10 model it is 100 k yr. F or some models, the total evolution time

s limited by numerical instabilities appearing at late times when 
he temperature goes well below 10 8 K (e.g. T (100 kyr ) ∼ 10 7 K
rom equation 40 ), and the magnetic Reynolds number grows. The
ppearance of instabilities also depends on the initial magnetic field 
trength and topology. This is similar to what we see in our 2D
agnetothermal code (Vigan ̀o et al. 2021 ). 
For all the models displayed in Table 2 , we consider a resolution

f: N r = 40 and N ξ = N η = 43 per patch which is equi v alent to 172
rid points around the equator and 87 points along a meridian from
ole to pole. Given the employed resolution, we look up to l = 30. 

.3 L5 model 

he first model, named L5, has an average magnetic field of 2 × 10 14 

 on average and a maximum of 7 × 10 14 G. The initial configuration
onsists of a large scale topology defined as a sum of multipoles up
o l = 5. Besides, this model is a Hall-dominant with a maximum
agnetic Reynolds number R m ∼ 200, during the evolution. For a 
ore quantitative analysis of the 3D magnetic evolution, we surv e y

he magnetic energy spectrum to observe the redistribution of the 
agnetic energy o v er the different spatial scales. 
MNRAS 518, 1222–1242 (2023) 
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Table 2. Initial models considered. l and m are the initial non-zero multipoles considered in each model. B avg is the average initial magnetic field. E mag is the 
initial magnetic energy (all in the crust). E tor / E mag is the fraction of the crustal toroidal energy. For all these models, we are confining the field lines to the crust 
of the star. We use the simplified cooling described in the text (equation 40 ), except in two models (‘deacti v ated’). 

Models l pol m pol l tor m tor B avg ( t 0) B max ( t 0) E mag ( t 0) E tor / E mag Simplified T fixed 

(G) (G) (erg) ( t 0) Cooling (K) 

L5 1,2,3,5 −1, 0, 1, 2, 3 1,2,3,5 0,1,2,3 ∼2 × 10 14 ∼7 × 10 14 ∼2 × 10 45 ∼ 63 per cent acti v ated –
L5-T1e9 1,2,3,5 −1, 0, 1, 2, 3 1,2,3,5 0,1,2,3 ∼2 × 10 14 ∼7 × 10 14 ∼2 × 10 45 ∼ 63 per cent deacti v ated 10 9 

L5-T2e8 1,2,3,5 −1, 0, 1, 2, 3 1,2,3,5 0,1,2,3 ∼2 × 10 14 ∼7 × 10 14 ∼2 × 10 45 ∼ 63 per cent deacti v ated 2 × 10 8 

L1 1 0 1 1 ∼3 × 10 14 ∼6.5 × 10 14 ∼4 × 10 45 ∼95 per cent acti v ated –
L10 1,6,7,10 −5, −1, 0, 1, 7, 8 1, 3, 7, 10 −5, 0, 2, 9 ∼10 14 ∼3 × 10 14 ∼6 × 10 44 ∼ 10 per cent acti v ated –
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In Fig. 9 , we examine the l energy spectrum (summing equa-
ion ( 34 ) o v er all m ’s) in the left-hand panel and the m energy
pectrum (summing it o v er all l ’s) in the right-hand panel, at
if ferent e volution times. At time zero, one can clearly distinguish the
ultipoles imposed initially. As soon as we start the evolution, part

f the magnetic energy is transferred from the large-scale multipoles,
nto the smaller scale ones. Moreo v er, we notice that higher order
 modes are excited in the system. At 1 kyr, most of the magnetic

nergy is concentrated in the initially imposed multipoles. Ho we ver,
 fraction of the magnetic energy is already transferred to l = 4 − 10.
ollo wing the e volution up to 5 and 10 kyr (red curves), the transfer of
nergy toward small-scales continues to fill in the entire spectrum. At
bout 20 kyr, the magnetic energy spectrum seems to have reached
 quasi-stationary state, i.e. the Hall-saturation. Considering that
he dissipation goes as L 

2 / ηb ( L is the typical spatial scale of the
eld curvature), the small-scale structures dissipate faster than the

arge-scale ones. At the same time, the former are continuously fed
y the latter, thanks to the Hall term in the induction equation.
his is known as the Hall cascade, it consists in an equilibrium
istribution of magnetic energy, o v er a quite broad range of mul-
ipoles, with an approximate l −2 slope (Goldreich & Reisenegger
992 ). 
Note that this cascade and saturation needs two main conditions:

i) a Hall-dominated dynamics, i.e. large enough magnetic field; (ii)
n initial configuration that allows a full development of the Hall
ascade. As a matter of fact, poloidal and toroidal fields are not
ymmetrically coupled: the odd multipoles of the former are more
oupled to the even multipoles of the latter. In axial symmetry, this
mplies that one can maintain a perfect helicity-free configuration if
he initial field is given by only l = 1, 3, 5... poloidal components
nd l = 2, 4, 6... toroidal components. In this special case, not
ll multipoles are excited, and only odd/even families will show
p in the spectrum. Ho we ver, in a general non-axisymmetric case
ith arbitrary combinations of initial multipoles, if the Hall term
ominates, the relative weights of couplings between different modes
re not so clear. 

.4 The impact of temperature-dependent microphysics 

o appreciate the role of temperature-dependent microphysics in
he evolution of the magnetic field, we perform a comparison up
o 70 kyr, taking into consideration an identical magnetic field
onfiguration, with (L5 model) and without (L5-T1e9 and L5-T2e8
odels) temperature evolution. The microphysical coefficients for
5-T1e9 model are calculated at T = 10 9 K, whereas the ones for
5-T2e8 model are calculated at T = 2 × 10 8 K. Note that T = 10 9 

 corresponds to the temperature of an NS during the first years of
ts life, whereas T = 2 × 10 8 K, corresponds to the temperature at

10 kyr in L5 model. 
NRAS 518, 1222–1242 (2023) 
The results of the comparison at different evolution times are
llustrated in Fig. 10 . The upper panel corresponds to the comparison
etween L5 (solid lines) and L5-T1e9 (dash-dotted lines) models,
hereas the bottom panel corresponds to the comparison between
5 (solid lines) and L5-T2e8 (dash-dotted lines) models. The three
odels o v erlap at initial time. A transfer of magnetic energy to small-

cale structures occurs in all cases. Nevertheless, a distinguishable
ehaviour happens during the field evolution in the first case (upper
anel of Fig. 10 ). Model L5-T1e9 is mostly dissipating in time with
egligible redistribution of the magnetic energy o v er the different
patial scales, i.e. the l energy spectrum keeps the same shape at t =
0 and 70 kyr. About 70 per cent of the total magnetic energy has
issipated for L5-T1e9 model after 10 kyr, but only 35 per cent of
he total magnetic energy has dissipated for L5 model. Therefore,
5-T1e9 model is an Ohmic-dominant. Whereas, L5 model is a
all-dominant. 
On the other hand, the evolution in time of L5 and L5-T2e8
odels is pretty comparable (bottom panel of Fig. 10 ). At about
 kyr, the transfer of energy is slightly more efficient for L5-T2e8
odel. That is because the temperature value considered for L5-
2e8 model, e.g. T = 2 × 10 8 K, is lower than the temperature value
t t ∼ 5 kyr obtained using equation ( 40 ). Therefore, the magnetic
eynolds number is slightly higher for the L5-T2e8 model since

he magnetic resistivity is lower for lower temperature. The l -energy
pectrum of the two models appear pretty similar at about 10kyr.
evertheless, at about 70 kyr, the results of the two simulations start

o diverge again. L5-T2e8 has dissipated more than L5 model, since
t this evolution stage, the magnetic Reynolds number is higher for
5 model. Nevertheless, both models, L5 and L5-T2e8 are Hall-
ominant. 
These different behaviours of the time evolution of the energy

pectrum highlight the impact of the temperature-dependent micro-
hysics on our results. The difference in spectra is very important in
he first case (upper panel of Fig. 10 ), instead it is slight in the second
ase (bottom panel of Fig. 10 ). Moreo v er, for a Hall-dominated field,
he specific value of the magnetic dif fusi vity will only determine the
esistive scale, i.e. the width of the inertial range where we see the
all cascade. Note, ho we ver, that in the second comparison (bottom
anel of Fig. 10 ), we set the dif fusi vity assuming T = 2 × 10 8 K,
hich is not far from the average value of temperature during the
rst 50 kyr. To obtain more realistic results, a 3D magnetothermal
ode coupled with realistic microphysics is needed. 

.5 Different initial multipolar topology 

.5.1 Magnetic field lines 

o study the impact of adopting different topologies, we consider
hree different models with different initial multipoles. Besides the
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Figure 9. L5 model . Left-hand panel: l energy spectrum. Right-hand panel: m energy spectrum. The energy spectra are displayed at times 0, 1, 5, 10, 20, 30, 40, 50, 
60, and 70 kyr (see colour bars). The l −2 slope corresponds to the Hall cascade equilibrium distribution of magnetic energy o v er a quite broad range of multipoles. 

Figure 10. A comparison up to 70 kyr of the l energy spectrum for L5 model, 
with temperature evolution (solid lines) and without temperature evolution 
(dash-dotted lines). The temperature is fixed to T = 10 9 K in the upper panel, 
and to T = 2 × 10 8 K in the bottom panel. In the upper panel, the comparison 
is illustrated at t = 0 (black), t = 10 kyr (dark red), and t = 70 kyr (yellow) and 
in the bottom panel at t = 0 (black), t = 5 kyr (red), t = 10 kyr (dark red), and 
t = 70 kyr (yellow). The l −2 slope corresponds to the Hall cascade equilibrium 

distribution of magnetic energy o v er a quite broad range of multipoles. 
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5 model presented in Section 5.3 , L1 is a model with a pure dipolar
eld, i.e. l = 1, in both the poloidal and toroidal components. L10

s characterized by having a wider combination of initial multipoles, 
p to l = 10. Throughout the evolution, the maximum magnetic 
eynolds number reaches ∼200 for L5 model, ∼150 for L1 model,
nd ∼50 for L10 model. 

In Fig. 11 , we display the magnetic field lines for L5 model
left-hand panels), L1 model (central panels), and L10 model (right- 
and panels), at t = 0 (upper row) and after 50 kyr (bottom row).
t t = 0, one can clearly distinguish the three different magnetic
eld configurations adopted in these models. After a few Hall time-
cales, e.g. ∼50 kyr, the field lines are more tangled but one can still
ecognize the initial magnetic field configurations: the star has not 
ost memory of the initial large scale topology. 

.5.2 Energy spectrum 

he evolution in time of the energy spectrum (as a function of l ) is
isplayed in Fig. 12 . On the left, we illustrate the L10 model, whereas
n the right we show L1 model. Note that for the L10 model, one
an infer the weights of the multipoles initially defined in the system
y looking at the black energy spectrum in the left-hand panel of
ig. 12 . A redistribution of the magnetic energy o v er different spatial
cales occurs in both cases. Nevertheless, L10 model tends to inject
agnetic energy in l = 16 − 18 and l = 20, more than other modes.
 similar, less evident bump in the energy spectrum appears at l =
7 and l = 29. These bumps are more evident at early stages of the
volution, e.g. up to t = 40 kyr. The injected energy in these small-
cale modes is insignificant with respect to the initially dominant 
odes in the system. Still this peculiar energy injection at small-

cale structures could be a hint of Hall instability (Gourgouliatos &
ons 2020 ) that will take place in such an initial field configuration for
 higher magnetic Reynolds number. At later stages of the evolution,
he magnetic energy is redistributed more homogeneously o v er the
mall-scale structures, and the lower part of the spectrum, e.g. from
 = 12 up to l = 30 follows the l −2 slope (Goldreich & Reisenegger
992 ). Nevertheless, the l -energy spectrum keeps a strong memory,
t low l s, of the initial configuration for the whole evolution, e.g. t =
00 kyr. This is because the largest scales have longer time-scales,
L 

2 /( f h B ), where L is the length scale of the field (related to l ),
herefore it is much harder to transfer energy out of/into them. Said
n other words, the inertial range of the Hall cascade includes scales
ith sufficiently short time-scales. 
The transfer of magnetic energy o v er different spatial scales is

mooth for L1 model compared to L10 model. For L1 model, the
nergy spectrum is well described by an l −2 power law up to l = 20.
or smaller scale multiples, e.g. l > 20, we notice an excess of energy.
MNRAS 518, 1222–1242 (2023) 
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Figure 11. Field lines in the crust of an NS, for L5 model on the left, L1 model in the centre, and L10 model on the right, at t = 0 (upper panels) and after t = 

50 kyr (bottom panels). The colour scale indicates the local field intensity, in units of 10 12 G. 

Figur e 12. l ener gy spectrum up to 100 kyr for L10 model (left-hand panel) and up to 85 kyr for L1 model (right-hand panel). See colour bars to identify the 
ages. The l −2 slope corresponds to the Hall cascade equilibrium distribution of magnetic energy o v er a quite broad range of multipoles. 
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his injection of energy in the smallest structures grows in time and

ecomes evident at about t ∼ 70–80 kyr, although it remains orders
f magnitude lower than the dominant dipolar mode, l = 1. We defer
 deeper exploration of different initial magnetic field topologies and
heir astrophysical implications for future works. 

.5.3 Poloidal and toroidal decomposition 

sing the notation in equation ( 34 ), we can decompose the mag-
etic energy into its poloidal and toroidal parts. In Fig. 13 , we
NRAS 518, 1222–1242 (2023) 
how the evolution of the poloidal and toroidal magnetic energy.
t early evolutionary stages, the bulk of the magnetic energy of
5 model is stored in the toroidal field ( ∼ 63 per cent ), whereas

he poloidal energy accounts for about ∼ 37 per cent of the total
agnetic energy. Following the evolution, we note that the toroidal
eld tends to dissipate almost five times faster than its poloidal
ounterpart, resulting in an inversion of the poloidal–toroidal ratio.
hat can be explained because the toroidal energy is ef fecti vely

edistributed in smaller scale multipoles (which in turn dissipate
aster) while most of the poloidal energy remains in the l = 1 mode
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Figure 13. Decomposition of the poloidal and toroidal magnetic energy. Poloidal magnetic energy is represented with dash-dotted lines, the toroidal energy 
with dots, and the total magnetic energy with solid lines. Upper panels: L5 model. Central panels: L1 model. Lower panels: L10 model. Left - hand column: 
Poloidal and toroidal decomposition of the magnetic energy as a function of time. Right-hand column: l energy spectrum at t = 0 (black), t = 10 kyr (dark red), 
and after 50 kyr (olive). 
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Upper right-hand panel). Moreo v er, we observ e that, after a few
all time-scales, the system reaches some sort of equipartition of 

he magnetic energy between the poloidal and the toroidal energy 
pectrum, as a result of the Hall-dominant evolution. For L1 model 
central panels) most of the magnetic energy, e.g. ∼ 90 per cent , is
tored in the toroidal component. Instead, for L10 model (bottom 
anels), most of the magnetic energy is stored in the poloidal
omponent. After ∼100 kyr of evolution, the magnetic energy 
emains stored in the dominant mode, e.g. L1 maintains a toroidal-
ominion, whereas L10 maintains a poloidal-dominion. Neverthe- 
ess, approximate equipartition of the magnetic energy between the 
oloidal and toroidal components is also reached at about ∼10 kyr,
MNRAS 518, 1222–1242 (2023) 
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Figure 14. Model L10 . Evolution of the � poloidal scalar function, at 0, 20, and 50 kyr (from top to bottom). In the left-hand panels, we show the meridional 
cuts at the longitudes 0 ◦−180 ◦ (cutting through the centre of patches I and III). In the central panels we illustrate the meridional cut at the longitudes 90 ◦−270 ◦
(through the centre of patches II and IV). In the right-hand panels, we represent the equatorial 2D cuts. The crust is greatly enlarged for visualization purposes. 
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ut only at small scales. Large scales are not easily forgotten or
reated. 

These results validate the fact that the system fa v ours the redistri-
ution of magnetic energy between poloidal and toroidal components
or the purpose of stabilizing the e volution. Note, ho we ver, that
ttaining this saturated configuration (often called the Hall attractor
nd was first introduced by Gourgouliatos & Cumming ( 2014 )) takes
ome tens of kyr, which is the same time-scale o v er which magnetars
re usually active. During this stage, the spectra and topology do still
epend on the initial configuration. 
In Figs 14 and 15 , we illustrate the meridional cuts at longitudes

 

◦−180 ◦ (left-hand panels), 90 ◦−270 ◦ (central panels), and equa-
orial cuts (right-hand panels), of the poloidal � and toroidal � 

calar functions for L10 model. The top panels correspond to the
nitial configuration, i.e. t = 0, the central panels to 20 kyr, whereas
NRAS 518, 1222–1242 (2023) 
he bottom panels to 50 kyr. Throughout the evolution, the poloidal
unction, which is initially dipole-dominated (lower right-hand panel
f Fig. 13 ), suffers only slight changes. On the contrary, the initially
ore complex toroidal scalar function is dominated by the l = 10
ode. The latter presents some important rearrangements. Moreo v er,
 drifting of the toroidal scalar function toward the surface of the star
ccurs, pointing up the need to couple this code with the evolution
n the magnetosphere. 

 C O N C L U S I O N  A N D  O U T L O O K  

e hav e dev eloped a new 3D code, MATINS , for the magnetothermal
volution of NS, of which we present here the magnetic field
ormalism and the first obtained results. The code is based on
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Figure 15. Model L10 . The evolution of 2D cuts of the � toroidal scalar function. Same cuts and times as Fig. 14 . 
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nite volume scheme applied to the cubed-sphere formalism, it 
s second-order accurate in space and fourth-order accurate in 
ime. The cubed-sphere formalism is a peculiar gridding technique 
idely used in different fields of physics, and it allows us to solve
artial differential equations in spherical geometry a v oiding the axis 
ingularity problem: a common problem that emerges when adopting 
nite volume/difference scheme in spherical coordinates. 
We have shown that MATINS is stable and can follow to late

imes the evolution of the internal magnetic field in the crust of
Ss. It conserves the total energy contained in the system and the
ivergence-free condition of the magnetic field. Moreover, it has been 
 xtensiv ely tested, against analytical solution, e.g. the purely resistive 
est (Section 4.2 ) and numerical axisymmetric solutions replicable 
y our 2D code (Section 4.3 ). 
MATINS deals with realistic EoS and microphysics, important 

n particular for the local, temperature-dependent values of the 
onductivity. In this first magnetic oriented paper, we prescribe 
or simplicity an analytical formula for the evolution of the in-
ernal temperature, assumed to be homogeneous (Yakovlev et al. 
011 ). 
We have explored different initial field configurations (Section B2 ) 

sing this code. Our simulations (Section 5 ) confirm that for a
trong enough magnetic field, e.g. 10 14 −10 15 G, the Hall cascade
edistributes the energy across a wide range of scales, with a slope
l −2 . Moreo v er, an approximate equipartition of energy between

he poloidal and toroidal components happens at small scales. 
evertheless, attaining this saturated configuration (often call Hall 

ttractor) takes some tens of kyr, which is the same time-scale o v er
hich magnetars are usually active. During this stage, the spectra 

nd topology keep a strong memory of the initial large scales, which
re much harder to be restructured or created. This indicates that
he type of large-scale configuration attained during the neutron star 
MNRAS 518, 1222–1242 (2023) 
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ormation is crucial to determine the magnetic field topology at any
ge of its evolution. 

We also studied the difference (Section 5.4 ) between having a
xed (i.e. no time-dependent) prescription for the temperature, or
mploying a more realistic scenario (i.e. simplified cooling), for an
dentical initial field topology. We remark that for a high enough
emperature ( ∼10 9 K), the field evolution is Ohmic-dominant with
egligible redistribution of the magnetic energy o v er the different
patial scales. Instead, for a lower temperature values ( ∼10 8 K), the
eld evolution is Hall-dominant, and the impacts of the magnetic
esistivity on the topology and spectra are visible but minor. That is
ue to the fact that large scales are pretty insensitive on the exact
alue of the resistive scales. These differences feature the influence of
he temperature-dependent microphysics on our results and point up
he need of having a 3D magnetothermal code coupled with realistic

icrophysics. 
We are currently implementing the 3D anisotropic thermal evolu-

ion, taking into consideration its feedback on the magnetic evolution
and vice-versa). MATINS code will be then compared and tested with
bservations, using for the first time the state-of-the-art microphysics
crucial to derive sound luminosities or temperature maps). More-
 v er, a detailed study exploring different initial field configurations
nd their physical interpretation is also planned. Nevertheless, it is
mportant to highlight that a coupling of the internal crustal evolution
o the magnetosphere and to the core of the neutron star is crucial for
 complete study. 
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Figure A1. The cubed sphere represented with respect to Cartesian coordi- 
nates. The x-axis is directed outwards piercing the centres of patch I ( ̂ e x ) and 
III ( − ˆ e x , behind, not visible), the y-axis goes to the right, piercing the centres 
of patch II ( ̂ e y ) and IV ( − ˆ e y ), the z-axis is directed upwards, piercing the 
centres of patch V ( ̂ e z ) and VI ( − ˆ e z ). 
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ransformation from spherical to cubed-sphere coordinates is needed 
t each magnetic time-step. This transformation has been also used 
n some other cases, in particular when defining the initial magnetic 
eld in spherical coordinates, e.g. Bessel test (Section 4.2 ). Instead, 

he transformation from cubed-sphere to spherical coordinates is 
pplied to generate the output files. 

The spherical coordinates consist, as usual, of: r ∈ [ R c , R � ], the
istance to the origin contained between the crust–core interface 
nd the surface; θ ∈ [0, π ], the co-latitude, also called polar or
nclination angle, i.e. the angle with respect to the North pole ( x =
 = 0, positive z in Cartesian coordinates); φ ∈ [0, 2 π ], the azimuth,
.e. the angle defined in the x −y plane, starting from the x -axis.
ach patch of the unit sphere is centred around a Cartesian axis,
s shown in Fig. A1 . The transformations between the different 
oordinates are the same as in, e.g. Ronchi et al. ( 1996 ), Lehner et al.
 2005 ). 

The coordinate directions of the patches are indicated in the 
xploded view of Fig. 1 and can be described qualitatively as
ollows: 5 : 

(i) Patch I: centre in x = 1 ( θ = 

π
2 , � = 0); ˆ e ξ → ˆ e y , ˆ e η → ˆ e z . 

(ii) Patch II: centre in y = 1 ( θ = 

π
2 , � = 

π
2 ); ̂  e ξ → − ˆ e x , ̂  e η → ˆ e z .

(iii) Patch III: centre in x = −1 ( θ = 

π
2 , � = π ); ̂  e ξ → − ˆ e y , ̂  e η →

ˆ  z . 
(iv) Patch IV: centre in y = −1 ( θ = 

π
2 , � = 

3 π
2 ); ˆ e ξ → ˆ e x , ˆ e η →

ˆ  z . 
(v) Patch V: centre in z = 1 ( θ = 0, � undefined); ˆ e ξ → ˆ e y ,

ˆ  η → − ˆ e x . 
(vi) Patch VI: centre in z = −1 ( θ = π , � undefined); ˆ e ξ → ˆ e y ,

ˆ  η → ˆ e x . 
 The direction is indicated for brevity by → , and is exact only at the centre 
f each patch, with more non-trivial directions as they approaches the edges, 
here the angular deviation increases up to π /4 (at the three-patch common 

orners). 

X
c
i
X
s
a

With this notation, we have the following relations between 
ubed sphere, spherical and Cartesian coordinates, for each 
atch: 6 

(i) Patch I (Equator) 

 = y/x = tan φ

Y = z/x = 1 / tan θ cos φ

x = r / 
√ 

δ, y = r X/ 
√ 

δ, z = r Y / 
√ 

δ

θ = arctan [( cos ξ tan η) −1 ] = arctan ( C/Y ) 

φ = ξ (A1) 

(ii) Patch II (Equator) 

 = −x/y = −1 / tan φ

Y = z/y = 1 / tan θ sin φ

x = −r X/ 
√ 

δ, y = r / 
√ 

δ, z = r Y / 
√ 

δ

θ = arctan ( C/Y ) 

φ = ξ + 

π

2 
(A2) 

(iii) Patch III (Equator) 

 = y/x = tan φ

Y = −z/x = −1 / tan θ cos φ

x = −r / 
√ 

δ, y = −r X/ 
√ 

δ, z = r Y / 
√ 

δ

θ = arctan ( C/Y ) 

φ = ξ + π (A3) 

(iv) Patch IV (Equator) 

 = −x/y = −1 / tan φ

Y = −z/y = −1 / tan θ sin φ

x = r X/ 
√ 

δ, y = −r / 
√ 

δ, z = r Y / 
√ 

δ

θ = arctan ( C/Y ) 

φ = ξ + 

3 π

2 
(A4) 

(v) Patch V (North) 

X = y/z = tan θ sin φ

Y = −x/z = − tan θ cos φ

x = −r Y / 
√ 

δ, y = r X/ 
√ 

δ, z = r / 
√ 

δ

θ = arctan 
√ 

δ − 1 

f ( X > 0 , Y < 0) φ = − arctan ( X/Y ) ( region α) 

f ( X > 0 , Y > 0) φ = π − arctan ( X/Y ) ( region β) 

f ( X < 0 , Y > 0) φ = π − arctan ( X/Y ) ( region γ ) 

f ( X < 0 , Y < 0) φ = 2 π − arctan ( X/Y ) ( region δ) (A5) 
MNRAS 518, 1222–1242 (2023) 

 and a ≡ Y , not equally spaced in ξ and η. Note also that their patches 0-5 
orrespond to I-VI here, in the same order. The θ ( ξ , η) and φ( ξ , η) are derived 
n this work with simple trigonometric relations starting from the definitions 
 ( θ , φ) and Y ( θ , φ). For the polar patches, we have employed the identities 
in ( arctan β) = ± | β | / 

√ 

1 + β2 (i.e. 
′′ + 

′′ 
if β > 0 and 

′′ − ′′ 
if β < 0) 

nd cos ( arctan β) = 1 / 
√ 

1 + β2 . 
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M

Figure A2. Subdivision of patch V and patch VI. Each of these patches is 
divided into four sub-regions, and each of these sub-regions has a different 
sign of the X / Y ratio. This subdivision is crucial to properly define φ in the 
range [0: 2 π ]. 
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(vi) Patch VI (South) 

X = −y/z = − tan θ sin φ

Y = −x/z = − tan θ cos φ

x = r Y / 
√ 

δ, y = r X/ 
√ 

δ, z = −r / 
√ 

δ

θ = π − arctan ( 
√ 

δ − 1) 

f ( X > 0 , Y < 0) φ = π + arctan ( X/Y ) ( region α) 

f ( X > 0 , Y > 0) φ = arctan ( X/Y ) ( region β) 

f ( X < 0 , Y > 0) φ = 2 π + arctan ( X/Y ) ( region γ ) 

f ( X < 0 , Y < 0) φ = π + arctan ( X/Y ) ( region δ) (A6) 

Note that along the equatorial-centred patches I-II-III-IV, the ξ
oordinate coincides with the φ coordinate in spherical, with a phase
hift of (0, π /2, π , 3 π /2) respectively, and the transformation into θ
oordinate is the same in all the four patches (since the y co v er the
ame co-latitude). 

For the polar patches, the transformation is less trivial. Remember
lso that the arctan function tend to π /2 (i.e. patch I-IV and X > 0
n patch V and VI) and 3 π /2 (i.e. X < 0 in patch V and VI) if the
rgument tends to ±∞ (i.e. when the denominator Y of the ratios
 / Y and C / Y go to zero). 
In order to define φ in the range [0; 2 π ] and θ in the range [0;

], in patch V and patch VI, a subdivison of each of these patches is
eeded. This subdivision is crucial since the sign of X / Y ratio changes
n these subregions defined in patch V and patch VI of Fig. A2 . As
 consequence, to guarantee that φ goes from [0; 2 π ], a 

′′ + π
′′ 

(i.e.
ubregion β and γ of patch V and subregion α and δ of patch VI) or
 

′′ + 2 π
′′ 

(i.e. subregion δ of patch V and subregion γ of patch VI)
ust be added to the expression of φ. 

2 Jacobians 

n order to transform vectors from spherical coordinates to cubed
phere coordinates, we need the Jacobian matrices. Hereafter we
ndicate only the 2 × 2 Jacobian relating the transformation
f the tangential components, since the radial coordinate is the
ame. 

(i) Patch I-IV (Equator) 

A 

ξ

A 

η

)
= 

(
0 CD /δ1 / 2 

−1 XY /δ1 / 2 

)(
A 

θ

A 

φ

)
(A7) 

A 

θ

A 

φ

)
= 

(
XY /CD −1 
δ1 / 2 /CD 0 

)(
A 

ξ

A 

η

)
(A8) 
NRAS 518, 1222–1242 (2023) 
(ii) Patch V (North) 

A 

ξ

A 

η

)
= 

1 (
δ − 1 

)1 / 2 

(
DX −D Y /δ1 / 2 

CY CX/δ1 / 2 

)(
A 

θ

A 

φ

)
(A9) 

A 

θ

A 

φ

)
= 

1 

( δ − 1) 1 / 2 

(
X/D Y /C 

−Y δ1 / 2 /D Xδ1 / 2 /C 

)(
A 

ξ

A 

η

)
(A10) 

(iii) Patch VI (South) 

A 

ξ

A 

η

)
= 

1 (
δ − 1 

)1 / 2 

(−DX D Y /δ1 / 2 

−CY −CX/δ1 / 2 

)(
A 

θ

A 

φ

)
(A11) 

A 

θ

A 

φ

)
= 

1 

( δ − 1) 1 / 2 

( −X/D −Y /C 

Y δ1 / 2 /D −Xδ1 / 2 /C 

)(
A 

ξ

A 

η

)
(A12) 

Remember that the quantities X , Y , D , C , δ are functions of ξ and
, therefore the Jacobian depends on the location on the patch. Note
lso that in the equatorial patches vectors transform in the same
ay, due to the symmetry by construction of the four patches ( ξ

nd η are directed in the same way in the four patches, so that their
utual interfaces are along the η direction). This is not the case for

he polar patches. 
On the axis, the angular components of the vectors in the

pherical coordinates and the Jacobians abo v e are ill-defined and
hus they are not used. Therefore, when a spherical to cubed-sphere
ransformation is needed (boundary conditions, initial field given in
pherical coordinates), the angular components in the cubed-sphere
oordinates are averaged using the eight closest neighbours in the
angential direction surrounding the axis point at a given radial layer.

At each patch edge, to go from the coordinate system of the
djacent patch to that of the original patch, we use a Jacobian
atrix in order to calculate the vectors at the ghost cells and at the

order. The Jacobian is built passing through spherical coordinates,
.g.: to go from the north patch to an equatorial patch, JAC is a
ultiplication of the Jacobian needed to go from the north patch to

pherical coordinates (equation A10 ) and the Jacobian needed to go
rom spherical coordinates to an equatorial patch in cubed-sphere
oordinates (equation A7 ); instead from an equatorial patch to Patch
I, JAC is a multiplication of equation ( A8 ) and equation ( A11 ). 

3 Dot product 

onsidering the metric tensor defined in equation ( 4 ), the dot product
s given by: 

a · b = 

(
a r a ξ a η

)⎛ 

⎝ 

1 0 0 
0 1 − XY 

CD 

0 − XY 
CD 

1 

⎞ 

⎠ 

⎛ 

⎝ 

b r 

b ξ

b η

⎞ 

⎠ 

= a r b r + a ξ b ξ + a ηb η − XY 

CD 

(
a ξ b η + a ηb ξ

)
. (A13) 

he mixing term − XY 
CD 

(
a ξ b η + a ηb ξ

)
, is due to the fact that ̂  e ξ · ˆ e η �=

 since these two unit vectors are non-orthogonal. Therefore, the off-
iagonal terms are different from zero. 

4 Cross product 

he contravariant component of the cross product is given by 

 a × b ) l = a i b j g kl ˜ ε ijk , (A14) 

here g kl is the inverse of the metric, ˜ ε ijk = 

√ 

g ε ijk is the covariant
e vi–Ci vita tensor, ε ijk is the usual Le vi–Ci vita symbol, and 

√ 

g is
he square root of the determinant of the metric. The contravariant

art/stac2761_fA2.eps
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omponent of the cross product is then written as follows: 

a × b 
)l = 

δ1 / 2 

CD 

(
a ξ b η − a ηb ξ

)
ˆ e r 

+ 

1 

δ1 / 2 

(
CD 

(
a ηb r − a r b η

) + XY 

(
a r b ξ − a ξ b r 

))
ˆ e ξ

+ 

1 

δ1 / 2 

(
XY 

(
a ηb r − a r b η

) + CD 

(
a r b ξ − a ξ b r 

))
ˆ e η. 

(A15) 

he covariant components of the cross product are: 

 a × b ) l = ˜ ε uvl a 
u b v , (A16) 

hich, using the metric tensor of equation ( 4 ), read 

a × b 
)

l 
= 

δ1 / 2 

CD 

(
a ξ b η − a ηb ξ

)
e r 

+ 

δ1 / 2 

CD 

(
a ηb r − a r b η

)
e ξ

+ 

δ1 / 2 

CD 

(
a r b ξ − a ξ b r 

)
e η. (A17) 

n our work, the covariant components of the cross product are used
o calculate the covariant surface components (Section 2.3 ) used in 
he curl operator in Section 2.4 . 

PPENDIX  B:  MAGNETIC  FIELD  FORMALI SM  

1 Poloidal and toroidal decomposition 

n MHD, different formalisms can describe the magnetic field. Here 
e describe the most common notations found in the literature. For

ny 3D, solenoidal vector field B , like the magnetic field, we can
l w ays introduce the vector potential A so that 

B = ∇ × A (B1) 

B can be expressed by two scalar functions � ( x ) and �( x ) that define
ts poloidal and toroidal components as follows: 

B pol = ∇ × (∇ × � k 
)
, 

B tor = ∇ × � k , (B2) 

here k is an arbitrary vector. This decomposition is useful in 
roblems where k can be taken to be normal to the physical 
oundaries, and the boundary conditions in the toroidal direction 
re periodic. Therefore, for a spherical domain, and using the cubed- 
phere coordinates ( r , ξ , η), the suitable choice is k = r . 

Using the notation of Geppert & Wiebicke ( 1991 ), the basic idea is
o expand the poloidal � and toroidal � scalar functions in a series
f spherical harmonics at time zero in order to define the initial
onditions. Expanding the two scalar functions � and � as a series
f spherical harmonics we have: 

� ( t, r, θ, φ) = 

1 

r 

∑ 

l,m 

� lm 

( r, t) Y lm 

( θ, φ) 

( t, r, θ, φ) = 

1 

r 

∑ 

l,m 

� lm 

( r, t) Y lm 

( θ, φ) , (B3) 

here l = 1,..., l max is the degree and m = −l ,..., l the order of the
ultipole. Note that in 3D, the toroidal field is a mix of the two

angential components of the magnetic field, whereas the poloidal 
eld is a mix of the three components. This is less trivial than in 2D,
here the toroidal part consists of the azimuthal component and the 
oloidal part consists of the two other components of the magnetic
eld. 
Combining the poloidal and toroidal components of the magnetic 

eld, one can express the three components of the magnetic field in
pherical coordinates as 

B 

r = 

1 

r 2 

∑ 

lm 

l( l + 1) � lm 

( r) Y lm 

( θ, φ) 

B 

θ = 

1 

r 

∑ 

lm 

� 

′ 
lm 

( r ) 
∂ Y lm 

( θ, φ) 

∂ θ
+ 

1 

r s i nθ

∑ 

lm 

� lm 

( r ) 
∂ Y lm 

( θ, φ) 

∂ φ

 

φ = −1 

r 

∑ 

lm 

� lm 

( r ) 
∂ Y lm 

( θ, φ) 

∂ θ
+ 

1 

r s i nθ

∑ 

lm 

� 

′ 
lm 

( r ) 
∂ Y lm 

( θ, φ) 

∂ φ
. 

(B4) 

ith 

 

′ 
lm 

= e −λ ∂� lm 

∂r 
+ 

1 − e −λ

r 
� lm 

(B5) 

To determine the spectral energy distribution (equation 34 ), one 
eeds to reconstruct the three radial scalar functions, � lm , � 

′ 
lm 

, and
 lm defined as: 

 lm 

( r) = 

∑ 

lm 

1 

l( l + 1) 

∫ 
d S r B 

r Y lm 

( θ, φ) , (B6) 

 

′ 
lm 

( r ) = 

1 

r 

∑ 

lm 

1 

l( l + 1) 

∫ 
dd S r 

(
B 

θ ∂ Y lm 

∂ θ
+ 

B 

φ

sin θ

∂ Y lm 

∂ φ

)
, (B7) 

nd 

 lm 

( r ) = 

1 

r 

∑ 

lm 

1 

l( l + 1) 

∫ 
d S r 

(
B 

θ

sin θ

∂ Y lm 

∂ φ
− B 

φ ∂ Y lm 

∂ θ

)
. (B8) 

2 Initial models 

he initial topology of the magnetic field can be constructed by
hoosing a set of spherical harmonics, which define our topology. 
or instance for a dipole, we use Y l = 1, m , for a quadrupole Y l = 2, m ,
hereas a multipolar topology can be simply constructed by sum- 
ing several spherical harmonics 

∑ 

lm Y lm ( θ , φ). 
The set of spherical harmonics defines the angular part of the
agnetic field topology. One has the freedom of choosing the 

esired set of spherical harmonics. In our study, we impose potential
agnetic boundary conditions, and we use a set of radial scalar

unctions � lm ( r ), � lm ( r ) that smoothly match the potential boundary
onditions. 

For simplicity, we impose the radial profile of the dipolar 
oloidal scalar function, � l = 1, m ( r ), as in eq. (8) of Aguilera et al.
 2008 ): 

 l= 1 ,m 

( r) = � 0 μr( a + tan ( μR � ) b) (B9) 

here � 0 is the normalization and 

 = 

sin ( μr) 

( μr) 2 
− cos ( μr) 

μr 
, b = − cos ( μr) 

( μr) 2 
− sin ( μr) 

( μr) 
, (B10) 

is a parameter related to the magnetic field curvature, that needs
o be found for a given surface radius R � . 

For higher-order multipoles of the poloidal scalar function 
 l > 1), and for all the toroidal scalar function contribu-
ions � lm ( r ), we confine them inside the crust of a NS as
ollows 

 l> 1 ,m 

( r ) , � lm 

( r ) ∝ −(
R − r 

)2 (
r − R c 

)2 
(B11) 
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here the proportionality means that every multipole can have a
ifferent normalization (i.e. its initial weight). 
From � lm ( r ) and � lm ( r ), we build the magnetic field components,

efined by equations ( B2 ), using the curl operator in cubed-sphere
oordinates, equation ( 12 )–( 14 ). Such a construction ensure that the
NRAS 518, 1222–1242 (2023) 
nitial topology of the magnetic field is divergence-free up to machine
rror, and has no axis-singularity problem. 
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