Evaluating nickel removal efficacy of Filtralite under laboratory conditions: Implications for sustainable urban drainage systems

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/142825
Información del item - Informació de l'item - Item information
Título: Evaluating nickel removal efficacy of Filtralite under laboratory conditions: Implications for sustainable urban drainage systems
Autor/es: Mederos Corrales, Marlon | Pla, Concepción | Valdes-Abellan, Javier | Benavente, David
Grupo/s de investigación o GITE: Ingeniería Hidráulica y Ambiental (IngHA) | Petrología Aplicada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Civil | Universidad de Alicante. Departamento de Ciencias de la Tierra y del Medio Ambiente
Palabras clave: Heavy metals | Filtralite | Nickel | HYDRUS | PHREEQC
Fecha de publicación: 9-may-2024
Editor: Elsevier
Cita bibliográfica: Journal of Water Process Engineering. 2024, 63: 105416. https://doi.org/10.1016/j.jwpe.2024.105416
Resumen: Our study deals with the critical issue of heavy metal pollution in urban runoff; we focused particularly on the threat posed by heavy metals such as nickel to living organisms and water resources owing to their toxicity at low concentrations and non-biodegradability. In this study, we evaluated the efficacy of Filtralite, a filtration medium with excellent hydraulic properties, in removing nickel from water through laboratory experiments and advanced simulation tools. We analysed the geochemical processes involved in nickel removal, including precipitation and adsorption. Importantly, we implemented an innovative approach for numerical modelling using HP1, by combining HYDRUS-1D and PHREEQC for modelling solute transport in porous media and geochemical reactions, respectively. The experimental results revealed that the Filtralite-laden column achieved a removal efficiency of 93.5 % for injected nickel. We observed a significant increase in the effluent pH from 7.0 to 11.5 during the interaction with Filtralite, affecting the solubility of the nickel phases. The model showed the highest nickel concentration in the initial column layers because of rapid chemical precipitation and adsorption upon contact with Filtralite. High-resolution scanning electron microscopy images confirmed the presence of amorphous precipitates around the soil particles, aligning with the changes in pH. This study contributes significantly to environmental engineering and urban water management by introducing an innovative numerical model in HP1 to accurately simulate the removal of nickel using Filtralite. These findings validate the efficiency of Filtralite in extracting nickel from aqueous solutions. Thus, Filtralite is a strong candidate for inclusion in sustainable urban drainage systems.
Patrocinador/es: This work was supported by University of Alicante (project GRE17-12), and Generalitat Valenciana (project GV/2020/059). A pre-doctoral research fellowship (CIACIF/2021/469) was awarded to M.M. by the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital.
URI: http://hdl.handle.net/10045/142825
ISSN: 2214-7144
DOI: 10.1016/j.jwpe.2024.105416
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jwpe.2024.105416
Aparece en las colecciones:INV - PETRA - Artículos de Revistas
INV - IngHA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMederos_etal_2024_JWaterProcessEng_final.pdfVersión final (acceso restringido)6,57 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.