Estimating the universal scaling of gas diffusion in coarse-textured soils

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/142741
Información del item - Informació de l'item - Item information
Título: Estimating the universal scaling of gas diffusion in coarse-textured soils
Autor/es: Valdes-Abellan, Javier | Benavente, David | Ghanbarian, Behzad | Moldrup, Per | Arthur, Emmanuel | Norgaard, Trine | Wollesen de Jonge, Lis
Grupo/s de investigación o GITE: Ingeniería Hidráulica y Ambiental (IngHA) | Petrología Aplicada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Civil | Universidad de Alicante. Departamento de Ciencias de la Tierra y del Medio Ambiente
Palabras clave: Soil gas diffusion | Soil water retention curve | Van Genuchten model | Percolation theory | Effective medium approximation
Fecha de publicación: 9-may-2024
Editor: Elsevier
Cita bibliográfica: Geoderma. 2024, 446: 116900. https://doi.org/10.1016/j.geoderma.2024.116900
Resumen: Gas diffusion, D, in partially saturated soils, constitutes a critical topic in soil sciences. However, it is a complex process and this limits its characterization and estimation. In this study, we analyzed and parameterized the soil gas diffusion using a combination of percolation theory (PT) and the effective-medium approximation (EMA). Here, we selected 126 coarse-textured soils with measurements including sand, silt, and clay content, bulk density, organic matter, porosity, soil water content measured at different pressure heads and saturation-dependent gas diffusion. First, we adopted the van Genuchten model, fit it to the soil water retention curve (SWRC), optimized its parameters, and determined the water content at the inflection point. Second, the parameters of the universal scaling law from PT and EMA were optimized by directly fitting the model to the saturation-dependent gas diffusion data. Those parameters are (1) the critical air-filled porosity, εc, (2) the crossover air-filled porosity, εx, at which the gas movement behavior changes from the percolation theory domain to the EMA domain; and (3) the average pore coordination number, z. Next, a multiple linear regression analysis (MLRA) was applied to link εc, εx and z to other soil parameters, such as soil textural and/or hydraulic properties. Uncertainties in our results were evaluated using a jack-knife resampling technique, which involved applying the MLRA more than 7000 times. Results revealed that the most accurate estimations were obtained when both soil textural and hydraulic properties were used simultaneously. However, the use of only soil textural parameters presents practical advantages, as it provides excellent estimations for εx and z, although not for εc. The latter is a critical parameter in the application of the PT and EMA to gas diffusion that requires both the soil basic properties and water saturation curve properties to be correctly estimated.
Patrocinador/es: This work was partially supported by the Spanish Ministry of Science, Innovation, and Universities [grant numbers RTI2018-099052-BI00 and PID2022-139990NB-I00].
URI: http://hdl.handle.net/10045/142741
ISSN: 0016-7061 (Print) | 1872-6259 (Online)
DOI: 10.1016/j.geoderma.2024.116900
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.geoderma.2024.116900
Aparece en las colecciones:INV - IngHA - Artículos de Revistas
INV - PETRA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailValdes-Abellan_etal_2024_Geoderma.pdf4,66 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.