Pullout Performance and Branching Effect of Radial Cables to Reinforce the Steep Fill–Bedrock Interfaces: Investigation of a Pullout Test and a Numerical Simulation

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/142000
Información del item - Informació de l'item - Item information
Título: Pullout Performance and Branching Effect of Radial Cables to Reinforce the Steep Fill–Bedrock Interfaces: Investigation of a Pullout Test and a Numerical Simulation
Autor/es: Li, Zhao | Huang, Da | Luo, Shilin | Huang, Wenbo | Tomás, Roberto
Grupo/s de investigación o GITE: Ingeniería del Terreno y sus Estructuras (InTerEs)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Civil
Palabras clave: Radial cable | Pullout performance | Branching effect | Fill slope | Steep fill–bedrock interface
Fecha de publicación: 21-mar-2024
Editor: American Society of Civil Engineers (ASCE)
Cita bibliográfica: International Journal of Geomechanics. 2024, 24(6): 04024088. https://doi.org/10.1061/IJGNAI.GMENG-8368
Resumen: Steep fill–bedrock interfaces usually appear in many filling soil infrastructures, such as airports, houses, and road embankments in mountainous areas, when the excavation of rock slopes is constrained. These interfaces are prone to be tensioned up to failure, which easily triggers landslides of fill slopes. The anchor system buried in the fill soil, named radial cable system, was proposed for effectively enhancing the stability of steep fill–bedrock interfaces. At the interface, the steel ropes of the anchor section cable were equally divided into three subcables with a radial distribution. The pullout performance, failure evolution, and branching effect of the radial cable coupled with anchor plates were studied by a pullout test (in a laboratory setup) and a numerical simulation. The results showed that (1) the ultimate pullout capacities (Pu) of the radial cables were 193.53%–312.94% (for the 7 mm diameter of the anchor plate) and 141.25%–247.50% (for the 10 mm diameter of the anchor plate) greater than those of the single cables; (2) the pullout performance of the radial cable was significantly improved with an increase in the diameter of the anchor plate, and the optimal radial inclined angle of subcables coupled with anchor plates was 15°; (3) the soil surrounding the radial cable showed a progressive failure pattern, and its failure area was basically a symmetric conical; and (4) the radial cable can better reinforce the steep fill–rock interface than the conventional cable, as verified by a hill-fill project. The results of this study provide some new and important guidelines for the design and application of the radial cable system.
Patrocinador/es: This work is supported by the National Natural Science Foundation of China (41972297), the Natural Science Foundation of Hebei Province (D2021202002), scientific research project from the Education Department of Hunan Province (21C0753), the Changsha Municipal Natural Science Foundation (kq2202065), and Natural Science Foundation of Hunan Province (2022JJ40521). The work of author Roberto Tomás is supported by the ESA-MOST China DRAGON-5 project (ref. 59339).
URI: http://hdl.handle.net/10045/142000
ISSN: 1532-3641 (Print) | 1943-5622 (Online)
DOI: 10.1061/IJGNAI.GMENG-8368
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © ASCE
Revisión científica: si
Versión del editor: https://doi.org/10.1061/IJGNAI.GMENG-8368
Aparece en las colecciones:INV - INTERES - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLi_etal_2024_IntJGeomech_final.pdfVersión final (acceso restringido)3,49 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailLi_etal_2024_IntJGeomech_accepted.pdfAccepted Manuscript (acceso abierto)2,79 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.