Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/130000
Información del item - Informació de l'item - Item information
Título: Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects
Autor/es: Lopes, Victor | Chiappe, Guillermo | Ribeiro, Laercio Costa | Anda, Enrique V.
Grupo/s de investigación o GITE: Física de la Materia Condensada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Spin–orbit coupling | Spintronics | Interferometer | Functional nano-heterostructures | One-dimensional nanostructures | Semiconductor nanowires | Spin-polarized current
Fecha de publicación: 20-nov-2022
Editor: MDPI
Cita bibliográfica: Lopes V, Chiappe G, Ribeiro LC, Anda EV. Totally Spin-Polarized Currents in an Interferometer with Spin–Orbit Coupling and the Absence of Magnetic Field Effects. Nanomaterials. 2022; 12(22):4082. https://doi.org/10.3390/nano12224082
Resumen: The paper studies the electronic current in a one-dimensional lead under the effect of spin–orbit coupling and its injection into a metallic conductor through two contacts, forming a closed loop. When an external potential is applied, the time reversal symmetry is broken and the wave vector k of the circulating electrons that contribute to the current is spin-dependent. As the wave function phase depends upon the vector k, the closed path in the circuit produces spin-dependent current interference. This creates a physical scenario in which a spin-polarized current emerges, even in the absence of external magnetic fields or magnetic materials. It is possible to find points in the system’s parameter space and, depending upon its geometry, the value of the Fermi energy and the spin–orbit intensities, for which the electronic states participating in the current have only one spin, creating a high and totally spin-polarized conductance. For a potential of a few tens of meV, it is possible to obtain a spin-polarized current of the order of μA. The properties of the obtained electronic current qualify the proposed device as a potentially important tool for spintronics applications.
Patrocinador/es: V.L. and G.C. acknowledge financial support from the Generalitat Valenciana through grants references Prometeo/2021/017 and MFA/2022/045. V.L. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación, PID2019-109539GB. G.C. acknowledges financial support from the Spanish Ministry of Education and Science, PID2019-109539GB-C41 and PID2019-106114GB-I00. E.V.A. acknowledges financial support from the Brazilian Agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process number 306000/2017-2.
URI: http://hdl.handle.net/10045/130000
ISSN: 2079-4991
DOI: 10.3390/nano12224082
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/nano12224082
Aparece en las colecciones:INV - Física de la Materia Condensada - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLopes_etal_2022_Nanomaterials.pdf530,96 kBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons