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Abstract: The paper studies the electronic current in a one-dimensional lead under the effect of
spin–orbit coupling and its injection into a metallic conductor through two contacts, forming a closed
loop. When an external potential is applied, the time reversal symmetry is broken and the wave
vector k of the circulating electrons that contribute to the current is spin-dependent. As the wave
function phase depends upon the vector k, the closed path in the circuit produces spin-dependent
current interference. This creates a physical scenario in which a spin-polarized current emerges, even
in the absence of external magnetic fields or magnetic materials. It is possible to find points in the
system’s parameter space and, depending upon its geometry, the value of the Fermi energy and the
spin–orbit intensities, for which the electronic states participating in the current have only one spin,
creating a high and totally spin-polarized conductance. For a potential of a few tens of meV, it is
possible to obtain a spin-polarized current of the order of µA. The properties of the obtained electronic
current qualify the proposed device as a potentially important tool for spintronics applications.

Keywords: spin–orbit coupling; spintronics; interferometer; functional nano-heterostructures; one-
dimensional nanostructures; semiconductor nanowires; spin-polarized current

1. Introduction

The possibility of controlling the degree of freedom of electronic spin has been very
important for the development of spintronics [1–5] and is very promising for the elaboration
of qubits devices in the field of quantum computing [6–8]. In this context, several systems
have been proposed as sources of spin-polarized current, most of which use the coupling of
electron motion and spin, through spin–orbit coupling (SOC) [9]. This is the case of the Datta
and Das transistor [10] based on the spin precession of the electronic current produced by
this interaction in a narrow-gap semiconductor located between two magnetized contacts
and devices [11–14] based on persistent spin helix states [15]. However, the spin splitting
that could facilitate the creation of polarized currents cannot, in principle, be produced
by the unique action of SOC, because the system possess states with opposite spins and
the same energy due to Kramer’s degeneracy [16], a result of time reversal symmetry [9].
Magnetic fields, magnetic materials, and the injection of spin-polarized currents [17–27] or
time-dependent Hamiltonians [28] have been used to break this symmetry and generate
or manipulate spin-polarized currents. To obtain this result in non-magnetic materials,
or without applying an external magnetic field, several systems have been proposed,
such as point contact [29,30], graphene nanostructures [31], planar systems with SOC
and corrugated graphene nanoribbons [32–34], or even creating spin-dependent chemical
potentials by microwave irradiation [35]. In reference [29], the authors reported a plateau
in the conductance of quantum point contact (QPC) devices, which was suggested to
be intrinsically related to the spontaneous spin polarization induced by lateral SOC for
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sufficiently high asymmetry of the lateral confinement. The asymmetry was induced by
the difference in the gate voltages applied through contacts that were transverse to the
electronic current direction. The conductance was measured as a function of a “sweeping
voltage”, simultaneously applied to all gates of the device. In another paper [36], some of
the authors theoretically handled the problem of spin polarization associated with lateral
spin orbit coupling by controlling the asymmetry of the lateral confinement potential. The
authors reported a spin-polarized conductance derived from such asymmetry but did not
obtain a totally spin-polarized current. The maximum polarization obtained was 60%. This
result was attributed to the single-particle model adopted, which does not incorporate the
electron–electron interaction, suggested as one of the essential ingredients to obtain totally
spin-polarized conductance [37]. Mikio Eto et. al. [38] also obtained a spin polarization of
more than 50% in a QPC system with Rashba SOC in the absence of a magnetic field or
magnetic materials, for experimentally accessible SOC intensities.

The authors of a recent paper [39] reported that some chiral molecules, such as DNA,
when placed between two metal contacts, can operate as a spin filter device, placing
emphasis on the orbital texture of the band structure and its influence in the polarization
of the quantum orbitals, which depends on the molecule chirality. This induces spin
polarization, due the spin–orbit effect in the metal contacts, in a process called chiral-
induced spin selection (CISS). In reference [40], the authors considered a system with
SOC composed of two QPC, one of them working as a collector—a spin analyzer—of the
electrons emitted from the other. In this device, the electrons emitted from the first QPC
are focused onto the collector through an external magnetic field perpendicular to the
two-dimensional electron gas. The charge accumulation in the collector produces voltage
differences and peaks through which, for the system with Rashba SOC, the spin projection
of the electrons leaving the emitter can be detected. Specifically, the spin polarization
of the electronic current is proportional to the height of two subsequent voltage peaks.
The authors obtained a spin polarization of 70%.

In addition, there are devices based on the Aharonov–Bohm effect [41], where a
magnetic flux through a ring breaks the time inversion symmetry. Many authors have
argued about this type of system, proposing spin-interference devices with the Aharonov–
Bohm effect and SOC [17,42–49], rings with a magnetization that gradually varies [50], or
rings irradiated by an electromagnetic field [51], creating an interference pattern reflected
in the current that circulates along the system. It is important to note that the correct form
of Hamiltonian to study this type of system, composed by the mesoscopic ring and the
SOC, was not always used. For a detailed discussion of this problem, see refs. [43,47].

Although there have been a large number of different proposals to produce spin-
polarized current devices, the polarization is not always easily manipulated or modified.

In this paper, we study the conduction properties of a device consisting of a one-
dimensional lead with spin–orbit coupling (1DLSOC), connected by two contacts, located
at two different sites of the lead, to a metallic conductor, creating a circuit with a closed
loop. The SOC and the broken time reversal symmetry produced by the applied voltage
give rise to a spin-dependent interference among the wave functions that describes the
electrons circulating along the two branches of the system. It is possible to show that
the conductance can be high and even completely spin-polarized, while the electronic
current injected into the metallic lead could reach µA for a potential of the order of meV.
The idea of creating a spin-polarized source using the broken symmetry produced by an
external bias has also been recently studied in a colinear antiferromagnetic device. The
external bias breaks the spin sublattice’s symmetry, generating a spin-polarized current,
with a polarization depending on the magnitude of the external bias voltage applied. The
polarization obtained was nearly 80% [52]. The system we propose can operate with high
and totally spin-polarized conductance, with relatively small SOC intensities. Moreover,
the device does not require the use of magnetic fields or magnetic materials, which facilitates
the injection of the polarized current into a metallic lead.
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2. Interferometer Design and Model Description

The system is described by a 1D tight-binding Hamiltonian that, even under the effect
of SOC, possesses SU(2) symmetry. This property permits a quantization axis to be defined
in an r̂̂r̂r direction, determined by the intensities of the Rashba and Dresselhaus SOC, along
which the spin is a good quantum number. This allows a SOC pseudo magnetic field to
be defined, depending upon the linear momentum k of the electron and pointing in the
r̂̂r̂r direction. The pseudo magnetic field points in the opposite direction when k changes
to −k, conserving time reversal symmetry [53]. However, when an external voltage is
applied, this symmetry is broken because the degenerate states with momentum k and
−k and opposite spin directions are differently populated. The occupied k values of the
electrons that contribute to the current introduce a spin-dependent wave function phase,
which produces different interference patterns in the closed loop of the circuit, creating a
spin-polarized current.

The system proposed is shown in Figure 1. It possesses a side-connected metallic lead,
represented by a half-linear chain into which the spin-polarized current is injected. This
metallic conductor is connected to a 1DLSOC by two contacts separated by a distance R,
through which the electrons can circulate. The wave function phase interference of the
electrons contributing to the current, depending upon the parameters, can give rise to
a total destructive interference for just one spin state, resulting in a fully spin-polarized
current for the opposite spin.
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Figure 1. Diagram of the interferometer composed of a one-dimensional lead on the SOC side coupled
through two contacts to a metallic conductor.

The 1DLSOC could be a nanowire adsorbed onto a metallic surface with a strong
or giant Rashba SOC [54–66] or a semiconductor nanowire, as in the systems studied in
refs. [67,68]. An external electrical field, along the perpendicular direction of the 1DLSOC,
enables the enhancement of the Rashba SOC intensity, allowing the phase difference to
be controlled between electrons with different spins. Moreover, this can be obtained
by manipulating the Fermi energies of the conductors through the application of a gate
potential on the metallic substrate, changing its charge content. The external voltage, V,
corresponds to the difference between the left and right sides of the Fermi device energies
given by εF,L = εF + V/2 and εF,R = εF − V/2, respectively. The energy εF defines the Fermi
level in thermodynamic equilibrium, when V = 0.

The Hamiltonian that describes the system is given by

H = ∑
k,σr

εkσr c†
kσr

ckσr + ∑
<i,j>,σr

tij f †
iσr

f jσr + ∑
k,σr

(
t′k f †

0σr
ckσr + h.c.

)
, (1)

where the first term, in the reciprocal space representation, corresponds to the 1DLSOC,
with a dispersion relation [53]

εkσr = −2z cos(ka− σrψ). (2)
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The renormalized nearest-neighbor hopping of the 1DLSOC is z =
√

t2 + |γ|2, where
γ = β + iα, i =

√
−1, α and β being the Rashba and Dresselhaus SOC intensities, respec-

tively. The parameter t is the nearest-neighbor hopping in the 1DLSOC and in the metallic
conductor, which, for simplicity, has been taken to be equal, and a is the lattice parameter.
The spin, represented by the quantum number σr, is quantized along an axis pointing in
the direction r̂̂r̂r(θ, φ) = r̂̂r̂r(π/2, φ), where θ is the polar angle and φ = tan−1(α/β) [53]. The
operator c†

kσr
(ckσr ) creates (annihilates) an electron with momentum k and spin σr in the

1DLSOC. The second term describes the side-attached metallic conductor and the third
corresponds to the connection between both subsystems. The operator f †

iσr
( fiσr ) creates

(annihilates) an electron at site i of the metallic conductor. The matrix elements connecting
the two subsystems, when the Hamiltonian describing the 1DLSOC is represented in the
reciprocal space, carry a k-dependent phase, which is given by t′k = t′(1 + exp(ikR)), where
R is the distance between the sites N and M of the SOC chain where the connections are
established, as shown in Figure 1, and t′ is supposed to be site-independent.

It is important to emphasize that r̂̂r̂r determines the direction of the spin polarization
of the current circulating through the device. It can be manipulated by modifying the
intensity parameter α of the Rashba SOC. The phase ψ = tan−1(|γ|/t), which appears in
Equation (2), is responsible for the spin-dependent occupation of the k states when the
applied voltage V drives the system out of thermodynamic equilibrium regime. Moreover,
the phase difference in the dispersion relation between spin up and down, ψ, gives rise
to the spin and momentum k-dependent interference among the charges contributing to
the current.

In order to illustrate the influence of the SOC, we show in Figure 2 the dispersion
relation εkσr as a function of k and spin σr, where the SOC intensities are taken to be
α = β = 1t. It is shown that for a value of εkσr between εF,R and εF,L, electrons with
different spins contribute to the current when ∂εkσr/∂k > 0, with different k values. In the
figure, k regions are represented by colored shadows.

−4

−3

−2

−1

0

1

2

3

4

−π/a −π/2a 0 π/2a π/a

εF,L = εF + V/2

εF,R = εF − V/2

ε k
σ
r

k

σr =↑
σr =↓

Figure 2. Dispersion relation εkσr as a function of k and spin σr. The SOC intensities are taken to be
α = β = 1t. The colored shadows illustrate, for each spin and εF,R < ε < εF,L, the electronic states
that participate in the current.

3. Current and Conductance Calculation

To calculate the conductance and the current injected into the metallic lead, we use
the Keldysh formalism [69,70], appropriated to study systems out of thermodynamic
equilibrium. In order to explore the advantages of dealing with the exact solution of the
SOC linear chain, we consider the two couplings connecting, through t′, the metallic semi-
chain to the k states that represent the 1DLSOC, as assumed in the Hamiltonian, Equation (1).
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The occupation of these states depends upon the Fermi energies εF,R and εF,L. For energies
ε < εF,R, all of the k states are occupied, while for the interval εF,R < ε < εF,L the occupied k
states, due to the direction of the current, are those that fulfill the spin-dependent condition,
∂εkσr/∂k > 0. With this in mind, we calculate Jσr (V), the spin-dependent electronic current
between sites 0 and 1, that corresponds to the current injected into the metallic conductor.
This is given by

Jσr (V) =
e
h

t
∫ εF+V/2

εF−V/2
dε

(
−+

Gσr
01(ε)−

−+
Gσr

10(ε)

)
, (3)

where
−+
Gσr

ij (ε) are the out of equilibrium Green functions [70] that depend upon the Fermi

levels εF,R = εF −V/2 and εF,L = εF + V/2 and on the spin σr. The
−+
Gσr

ij (ε) are obtained
through a perturbation calculation that considers the unperturbed system, in thermody-
namic equilibrium, corresponding to the structure when the connections, of site 0 with k
states of 1DLSOC and with site 1 of the metallic contact, are eliminated. This satisfies the
relationship

−+
G
−+
G
−+
G (ε) =

(
111 +G(r)G(r)G(r)(ε)ΣΣΣ

)−+
g
−+
g
−+
g (ε)

(
111 +ΣΣΣG(a)G(a)G(a)(ε)

)
, (4)

where the non-equilibrium matrix
−+
G
−+
G
−+
G (ε) is written as a function of the retarded and

advanced Green functions, G(r,a)G(r,a)G(r,a)(ε), superscript rrr and aaa, respectively, of the complete

structure and
−+
g
−+
g
−+
g (ε) that corresponds to the unperturbed system. The matrix ΣΣΣ is the

self-energy resulting from the connections of site 0 with the rest of the system.
The current is calculated from Equations (3) and (4). It is obtained from the expression

Jσr (V) =
e
h

2t2t′2
∫ εF+V/2

εF−V/2
dε|G00(ε)|2 ∑

k
(1 + cos(kR))

−+
gσr

k (ε)
+−
g1 (ε), (5)

where
−+
g1 (ε) = 2πρ1(ε) f (εF,R), ρ1(ε) =

√
4t2−ε2/2πt2 and f (εF,R) is the Fermi distribution

with a Fermi energy εF,R. The undressed equilibrium Green function
−+
gσr

k (ε) = 2πρσr
k f (εF,k)

depends upon the linear momentum such that the sum of k is calculated considering that
when ∂εkσr/∂k > 0, εF,k = εF,L, while for ∂εkσr/∂k < 0, εF,k = εF,R and ρσr

k (ε) = δ(ε− εkσr ).
The function δ(ε) is Dirac’s delta function.

The equilibrium Green function at site 0 can be written as

G00(ε) =
1

ε− t2g1(ε)− 2t′2 ∑
k
(1 + cos(kR))gσr

k (ε)
, (6)

where g1(ε) = (ε±
√

ε2−4t2)/2t2 and gσr
k (ε) = 1/(ε−εkσr−iη) are the undressed equilibrium

Green functions at the first site of the semi-chain and at the k momentum state of the
1DLSOC, respectively. The summation that appears in the denominator of Equation (6)
is over all k’s belonging to the first Brillouin zone. This is why the Green function G00(ε)
is spin-independent. However, the summation in k of Equation (5) is restricted to the
momentum of the electrons participating in the current, satisfying ∂εkσr/∂k > 0. This
condition originates a spin-dependent current result from Equation (5).

The conductance is obtained from the equations

Jσr (V) =
1
e

∫ εF+V/2

εF−V/2
dεGσr (ε) (7)

and

Gσr (ε) =
e2

h
8t2t′2π2|G00(ε)|2z

1 + cos
[
kσr
+(ε)R

]
√

4z2 − ε2
ρ1(ε), (8)
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where
kσr
+(ε) =

1
a

[
cos−1

(
− ε

2z

)
+ σrψ

]
(9)

is the momentum wave vector, restricted by the condition ∂εkσr/∂k > 0.
The phase of the 1DLSOC Bloch wave function φ(x) = exp(ikx)uk(x) that defines the

interference pattern in the closed loop of the circuit depends upon the k vector. This is
reflected by the cos(kσr

+(ε)R) dependence of the conductance as it appears in Equation (8).
Analyzing this equation, it is possible to conclude that, for a given value of R, the conduc-
tance with spin σr is zero when kσr

+(ε)R = nπ, where n is an odd integer. Hence, as the
value of kσr

+(ε) that contributes to the current depends upon the Fermi energy εF and on
the spin–orbit interaction phase ϕ, the conductance oscillates, modifying these parameters.
It is clear that the frequency of the oscillation increases with R. The polarization of the
current is mainly a result of the dependence of kσr

+(ε) on σr, as shown in Equations (8) and
(9). Finally, for the conductance to be completely spin-polarized, the Fermi level εF should
satisfy

εF = −2z cos
(nπa

R
− σrψ

)
. (10)

In order to investigate the conditions that optimize the device performance, we calcu-
late the differences between the conductances for opposite spins, finding that

|Gσr (ε)− G σ̄r (ε)| = e2

h
8t2t′2π2|G00(ε)|2z

ρ1(ε)√
4z2 − ε2

×

2 sin
[

R
2
(kσr

+ + kσ̄r
+)

]
sin
[

R
2
(kσr

+ − kσ̄r
+)

]
. (11)

Analyzing this equation, we can see that the difference between the two opposite spin
conductances is at its maximum when the sine arguments are multiples of π/2, i.e., (kσr

+ +

kσ̄r
+)R/2 = lπ/2 and (kσr

+ − kσ̄r
+)R/2 = mπ/2, where l and m are odd integers. According

to the first condition, the Fermi level εF satisfies the relationship

εF = −2z cos
(

lπa
2R

)
, (12)

while the second determines that the Rashba SOC intensity α is given by

α =
[
t2 tan2

(
σr

mπa
R

)
− β2

]1/2
. (13)

It is important to emphasize that Equations (10) and (12) are compatible if Equation (13)
is satisfied, indicating that the maximum polarized current is obtained when it is completely
spin-polarized. The conditions expressed in Equations (12) and (13) determine the Fermi
level εF required to obtain a complete spin polarization of the current. In other words, this
double condition maximizes the difference between the conductances, thus meaning that
for one spin the conductance is zero and for the other it adopts the maximum possible
value, a half quantum of conductance, e2/h. This is the case shown in Figure 3, where the
conductance Gσr (εF) oscillates, as a function of the Fermi level εF, between zero and e2/h.
We also observe in Figure 3a,c that the conductance peaks, around εF = 0, are higher than
those at the edges of the band due to the dependence of the conductance on the DOS of
the metallic semi-chain (see Equation (8)). We present in Figure 3b a magnification, around
the origin, of the same results as in Figure 3a, where the totally polarized conductance
maximum value is half a quantum of conductance. In this configuration, the parameters
of the system are taken to be R = 100a, t′ = t and we assume the Dresselhaus spin–orbit
interaction β = 10−2t. According to Equation (13), a completely spin-polarized current
with conductance equal to e2/h is achieved when the Rashba SOC is α ∼= 1.212× 10−2t,
which can be obtained by controlling the external electric field responsible for the Rashba
SOC, operating as a device tuner. Panel (c) shows the conductance for a small value of
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the distance between contacts, R = 10a, and β = 10−2t. In this configuration, the value
of α that satisfies the full spin polarization conditions is α = 0.158t. The Rashba SOC α
manipulation ensures that when the conductance for one spin is zero, the conductance for
the other could be very close to the maximum possible value, such that the device operates
with a large and fully polarized current.
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Figure 3. The conductance Gσr for each spin σr, panels (a–c), and the spin polarization of the current p,
panel (d), as a function of the Fermi energy εF. Panels (a,b,d) correspond to a system with R = 100a,
α = 1.212× 10−2t and β = 10−2t, while in panel (c) the parameters are R = 10a, α = 0.158t, and
β = 10−2t. For both configurations, t′ = t.

The amount of oscillation presented in the conductance results from the product
kσr
+(ε)R. The number of oscillations increases with the distance between the contacts, R,

as we can see in Figure 3a for R = 100a and in Figure 3c for R = 10a, where it is also
observed that the peaks reach their maximum values in the region close to εF = 0. The spin
polarization p is shown in Figure 3d. This quantity, defined as

p(ε) =
G↑(ε)− G↓(ε)
G↑(ε) + G↓(ε) , (14)

reflects the oscillatory behavior of conductance, assuming the values +1 and −1 when the
current is totally polarized in the spin-up and spin-down directions, respectively.
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Figure 4 shows the conductance Gσr , panel (a), and the spin polarization p, panel (b),
as a function of the Rashba SOC intensity α, for the parameters R = 100a, t′ = t, and
β = 10−2t. The Fermi level is assumed to be εF = 9.422× 10−2t and corresponds to the first
positive value where the spin-down conductance is zero, as shown in Figure 3b. Analyzing
the results, we see that by increasing the Rashba SOC intensity and keeping the other
parameters fixed, G↓ and G↑ change their value until G↑ becomes close to e2/h and G↓ = 0,
when α = 1.212× 10−2t. This α value satisfies the condition imposed by Equation (13),
reproducing the maximum of G↑ and the minimum of G↓ as shown in Figure 3b. We notice
that by increasing α, the Gσr oscillates and other points of maximum polarization appear
with conductance near e2/h, which corresponds to other solutions of Equation (13). In
panel (b), when α satisfies Equation (13), we observe that p alternatively takes the values
of +1 or −1. This figure illustrates that, by changing the Rashba SOC intensity, it is also
possible to tune the system so that for one spin the conductance is zero while for the other
the results are very close to the maximum possible value.

0
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0 0.02 0.04 0.06 0.08 0.1

(a)

−1
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(b)

Gσ
r
(e

2
/h
)

α

σr =↑
σr =↓

p

α

Figure 4. The conductance Gσr , panel (a), and the spin polarization of the current p, panel (b),
as a function of the Rashba SOC intensity α. The distance between contacts is R = 100a and
the Dresselhaus SOC parameter is β = 10−2t. The Fermi level is given by Equation (12), εF =

9.422× 10−2t, and when α satisfies Equation (13), Gσr is completely spin-polarized.

The electronic current injected into the metallic conductor Jσr (V) is obtained from the
conductance Gσr by Equation (7). Its behavior, as a function of the applied potential V, is
shown in Figure 5. The parameters that define the system are taken to be the same as those
of Figure 4, for the SOC intensities discussed above, for which the conductance is completely
spin-up. As in Figure 4, the Fermi level εF is fixed at the positive value where the first
spin-down conductance minimum occurs, according to Equation (12), εF = 9.422× 10−2t.
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Figure 5. Electronic current Jσr injected into the metallic conductor as a function of the applied
potential V. As in Figure 4, the distance between contacts is R = 100a and the Rashba and Dresselhaus
SOC parameters are α = 1.212× 10−2t and β = 10−2t, respectively. The Fermi level is taken to be
εF = 9.422× 10−2t, value for which the spin-down conductance is zero, and t = 1eV. The black
dotted line corresponds to the slope e/h.

As the Fermi level is located at a spin-down conductance minimum, the spin-down
current J↓ is practically zero until the applied potential increases, V > 0.03t, incorporating
the integral values of the spin-down conductance that are not zero (Equation (7)). On
the other hand, as the spin-up conductance is at a maximum value, the current has an
almost linear behavior for small V. Increasing the potential V, the oscillatory behavior of
the conductance begins to influence the current. The spin-down current increases, while
the spin-up current reaches a plateau at the center of the figure. Further increasing V,
the behavior of the spin currents is interchanged until a second plateau appears, close to
V = 0.25t, for the spin-down conductance.

4. Conclusions

We show that a device composed of a one-dimensional lead, under the effect of
spin–orbit coupling, connected to a metallic conductor through two contacts that create
a closed loop, can operate as a very efficient source of totally spin-polarized current,
without requiring the presence of an external magnetic field or magnetic materials. The
device permits control of the spin-polarized current by manipulating the intensity of the
Rashba spin–orbit coupling and of the Fermi level by the application of an external electric
field. In fact, we can tune the degree of polarization of the current in any of the spin
directions and obtain a totally spin-polarized conductance very near its maximum value,
e2/h, as shown in Figures 3 and 4.

These properties are the result of the pseudo-spin SU(2) symmetry, which permits the
definition of a direction of quantization along which the spin is a good quantum number,
and of the broken time reversal symmetry produced by the applied potential responsible
for the electrical current. An essential ingredient of the proposed device is that its closed
loop circuit creates an interference pattern for the circulating electron that determines the
total current through the system. The presence of the spin–orbit coupling introduces a
spin-dependent phase for the electronic wave function. As a consequence, the interference
introduced by the two alternative paths, along which the electronic current circulates,
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depends upon the spin. This is why, under the effect of an external potential and through
an adequate manipulation of the parameters, the device is capable of sustaining high and
totally spin-polarized currents. It is important to note that the spin polarization studied
corresponds to the current injected into the metallic conductor, which is not directly under
the effect of the spin–orbit coupling.

In real materials, disorder is always present. However, there have been several
experimental studies in one-dimensional systems with spin–orbit coupling [67,68], which
demonstrate that well-defined values of the wave vectors k are preserved and that the
localization length of the wave function, due to disorder, is much larger than the distances
involved in the proper operation of these one-dimensional devices. These devices show
high values for conductance, typically corresponding to one-dimensional perfect wires and
the existence of a “spin–orbit gap”. This gap is a result of the application of an external
magnetic field along the direction of the one-dimensional sample, and is theoretically
analyzed by assuming the momentum k to be a good quantum number. This shows that in
the system we are studying, disorder can be experimentally controlled in order to preserve
the transport properties that are described in the manuscript.

Finally, we mention that very interesting transport properties could emerge in more
complex systems. This could be the case when electron–electron components with a high
degree of interaction, or different geometries in the contact’s design, are incorporated,
which could improve the control of the spin-polarized current. Further research along these
lines is currently being developed.
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2. Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410. [CrossRef]
3. Chappert, C.; Fert, A.; Van Dau, F.N. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, 813–823. [CrossRef]
4. Hirohata, A.; Takanashi, K. Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 2014, 47, 193001. [CrossRef]
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