Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/122734
Información del item - Informació de l'item - Item information
Título: Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics
Autor/es: Martin-Pozas, Tamara | Cuezva Robleño, Soledad | Fernández Cortés, Ángel | Cañaveras, Juan C. | Benavente, David | Jurado Lobo, Valme | Sáiz Jiménez, Cesáreo | Janssens, Ivan A. | Seijas, Naomi | Sánchez Moral, Sergio
Grupo/s de investigación o GITE: Petrología Aplicada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ciencias de la Tierra y del Medio Ambiente
Palabras clave: Microbial activity | Subterranean ecosystems | Greenhouse gases fluxes | Moonmilk | Biomineralization
Área/s de conocimiento: Petrología y Geoquímica
Fecha de publicación: 29-mar-2022
Editor: Elsevier
Cita bibliográfica: Science of The Total Environment. 2022, 831: 154921. https://doi.org/10.1016/j.scitotenv.2022.154921
Resumen: Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions.
Patrocinador/es: This work was supported by the Spanish Ministry of Science, Innovation through project PID2019-110603RB-I00, MCIN/AEI/FEDER, UE/10.13039/501100011033 and with collaboration of projects RTI2018-099052-B-I00 and PID2020-114978GB-I00. This research has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 844535 — MIFLUKE.
URI: http://hdl.handle.net/10045/122734
ISSN: 0048-9697 (Print) | 1879-1026 (Online)
DOI: 10.1016/j.scitotenv.2022.154921
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.scitotenv.2022.154921
Aparece en las colecciones:INV - PETRA - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMartin-Pozas_etal_2022_SciTotEnv.pdf3,72 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons