Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/110788
Información del item - Informació de l'item - Item information
Title: Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment
Authors: Sanz-Lázaro, Carlos | Casado-Coy, Nuria | Beltrán Sanahuja, Ana
Research Group/s: Gestión de Ecosistemas y de la Biodiversidad (GEB) | Bioquímica Aplicada/Applied Biochemistry (AppBiochem) | Análisis de Alimentos, Química Culinaria y Nutrición (AAQCN)
Center, Department or Service: Universidad de Alicante. Departamento de Ecología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef" | Universidad de Alicante. Departamento de Química Analítica, Nutrición y Bromatología
Keywords: Bioplastics | Biogeochemistry | Blue carbon | Climate change | Plastic pollution
Knowledge Area: Ecología | Nutrición y Bromatología
Issue Date: 20-Feb-2021
Publisher: Elsevier
Citation: Science of The Total Environment. 2021, 756: 143978. https://doi.org/10.1016/j.scitotenv.2020.143978
Abstract: The seabed constitutes a global sink for plastic debris, where they can remain for centuries. Biodegradable plastics offer the advantage of having less persistence in the environment than conventional ones. The seabed is responsible for key ecosystem functions related to the cycling of elements by decomposing the labile fraction of organic matter and fueling primary production, while storing the most recalcitrant part of this organic matter and limiting CO2 emissions. Although plastics are expected to affect these processes, knowledge on this matter is scarce. In controlled microcosms, we show that biodegradable plastics can stimulate the decomposition of marine-buried carbon and reduce the release of inorganic nitrogen. We found that conventional and biodegradable plastics promoted anaerobic sediment metabolic pathways. Biodegradable plastics produced a two-fold CO2 release to the water column, which suggests the decomposition of not only plastics, but also of buried organic carbon. The stimulation of sediment metabolism could be due to excessive carbon consumption by bacteria that derives from a rise in the carbon:nitrogen ratio. Accordingly, the NH4+ flux to the water column lowered. As NOx fluxes also lowered, biodegradable plastics might promote nitrification-denitrification coupling. If biodegradable plastics become a major component of marine pollution, then sediment biogeochemical cycles might be strongly influenced, which could affect the carbon sequestration of coastal ecosystems and compromise their mitigation capacity against climate change.
Sponsor: This work has been funded by the Spanish Foundation for Science and Technology (FECYT2-19I; PR238). C. S. was funded by the University of Alicante (Ref. UATALENTO 17-11).
URI: http://hdl.handle.net/10045/110788
ISSN: 0048-9697 (Print) | 1879-1026 (Online)
DOI: 10.1016/j.scitotenv.2020.143978
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 Elsevier B.V.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.scitotenv.2020.143978
Appears in Collections:INV - AppBiochem - Artículos de Revistas
INV - GEB - Artículos de Revistas
INV - AAQCN - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailSanz-Lazaro_etal_2021_SciTotEnv_final.pdfVersión final (acceso restringido)552,35 kBAdobe PDFOpen    Request a copy
ThumbnailSanz-Lazaro_etal_2021_SciTotEnv_accepted.pdfAccepted Manuscript (acceso abierto)1,34 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.