Probing local moments in nanographenes with electron tunneling spectroscopy

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/110628
Información del item - Informació de l'item - Item information
Título: Probing local moments in nanographenes with electron tunneling spectroscopy
Autor/es: Ortiz-Cano, Ricardo | Fernández-Rossier, Joaquín
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Nanographenes | Local moments | Electron tunneling spectroscopy
Área/s de conocimiento: Física Aplicada | Física de la Materia Condensada
Fecha de publicación: dic-2020
Editor: Elsevier
Cita bibliográfica: Progress in Surface Science. 2020, 95(4): 100595. https://doi.org/10.1016/j.progsurf.2020.100595
Resumen: The emergence of local moments in graphene zigzag edges, grain boundaries, vacancies and sp3 defects has been widely studied theoretically. However, conclusive experimental evidence is scarce. Recent progress in on-surface synthesis has made it possible to create nanographenes, such as triangulenes, with local moments in their ground states, and to probe them using scanning tunneling microscope (STM) spectroscopy. Here we review the application of the theory of sequential and cotunneling transport to relate the dI/dV spectra with the spin properties of nanographenes probed by STM. This approach permits us to connect the dI/dV with the many-body energies and wavefunctions of the graphene nanostructures. We apply this method describing the electronic states of the nanographenes by means of exact diagonalization of the Hubbard model within a restricted Active Space. This permits us to provide a proper quantum description of the emergence of local moments in graphene and its interplay with transport. We discuss the results of this theory in the case of diradical nanographenes, such as triangulene, rectangular ribbons and the Clar’s goblet, that have been recently studied experimentally by means of STM spectroscopy. This approach permits us to calculate both the dI/dV spectra, that yields excitation energies, as well as the atomically resolved conductivity maps, that provide information on the wavefunctions of the collective spin modes.
Patrocinador/es: We acknowledge financial support from Ministry of Science and Innovation of Spain (grant numbers PID2019-106114GB-I00 and PID2019- 109539GB), from MINECO-Spain (Grant No. MAT2016-78625-C2) and from the Portuguese Fundação para a Ciência e a Tecnologia (FCT) for the projects P2020-PTDC/FIS-NAN/4662/2014, P2020-PTDC/FIS-NAN/3668/2014 and UTAPEXPL/NTec/0046/2017 projects. JFR acknowledges Generalitat Valenciana funding (Prometeo2017/139). R. O. acknowledge ACIF/2018/175 (Generalitat Valenciana and Fondo Social Europeo).
URI: http://hdl.handle.net/10045/110628
ISSN: 0079-6816 (Print) | 1878-4240 (Online)
DOI: 10.1016/j.progsurf.2020.100595
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.progsurf.2020.100595
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailOrtiz_Fernandez-Rossier_2020_ProgrSurfaceSci_final.pdfVersión final (acceso restringido)2,29 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailOrtiz_Fernandez-Rossier_2020_ProgrSurfaceSci_preprint.pdfPreprint (acceso abierto)2,83 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.