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Av. Mestre José Veiga, 4715-330 Braga, Portugal

(Dated: February 19, 2020)

The emergence of local moments in graphene zigzag edges, grain boundaries, vacancies and sp3

defects has been widely studied theoretically. However, conclusive experimental evidence is scarce.
Recent progress in on-surface synthesis has made it possible to create nanographenes, such as tri-
angulenes, with local moments in their ground states, and to probe them using scanning tunneling
microscope (STM) spectroscopy. Here we review the application of the theory of sequential and co-
tunneling transport to relate the dI/dV spectra with the spin properties of nanographenes probed
by STM. This approach permits us to connect the dI/dV with the many-body energies and wave-
functions of the graphene nanostructures. We apply this method describing the electronic states
of the nanographenes by means of exact diagonalization of the Hubbard model within a restricted
Active Space. This permits us to provide a proper quantum description of the emergence of local
moments in graphene and its interplay with transport. We discuss the results of this theory in the
case of diradical nanographenes, such as triangulene, rectangular ribbons and the Clar’s goblet, that
have been recently studied experimentally by means of STM spectroscopy. This approach permits
us to calculate both the dI/dV spectra, that yields excitation energies, as well as the atomically
resolved conductivity maps, that provide information on the wavefunctions of the collective spin
modes.

I. INTRODUCTION

Ideal graphene, without boundaries and defects, would
be a diamagnetic zero gap semiconductor with no un-
paired spins. In contrast, both real graphene and
graphene nanostructures are expected to host local-
ized magnetic moments at edges and defects accord-
ing to a large amount of theoretical work1–48. Both
graphene zigzag edges1,2,8,37,41 as well as a large class
of π-conjugated hydrocarbons36,45,47,49 host zero modes,
or singly occupied molecular orbitals, that are prone to
host local moments in the π orbitals. Carbon vacancies
are expected to have localized spins both in the dangling
bonds and the resulting zero mode that arises from the
removal of a single π orbital from the otherwise ideal
graphene7,12,25,40,44. Analogously, graphene functional-
ized with sp3 defects, such as atomic hydrogen, is also
predicted to host zero modes with an individual electron,
forming thereby a S = 1/2 defect16,25. Some graphene
grain boundaries are also predicted to host zero modes
and local moments22,29,35,38, as well as some interfaces
between ribbons of different width43,46.

All these predictions are based both on density func-
tional theory (DFT) calculations5,6,8,23,24,36 as well as
model Hamiltonian descriptions, at various levels of ap-
proximation, going from mean-field approximations2,8,13,
spin wave theory17,27, quantum Monte Carlo32,33,
density matrix renormalization group28 and exact
diagonalizations19,47. Thus, there is a consensus,
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in the theory front, that graphene local moments
arise in graphene systems where sublattice imbal-
ance is broken3,8,12,50, or in systems where localized
states arise close to the Fermi energy, such as grain
boundaries22,29,35,38. These local moments are predicted
to have very interesting properties: a very elegant in-
terplay between sublattice and spin polarization8,11,13,31,
prone to electrical control6,18,48 and electrically driven
spin resonance46, exotic Yu-Shiba-Russinov states when
proximitized by a superconductor39, domain walls with
fractional charge42, and even potential for quantum
computing20.

The situation in the experimental front is less ad-
vanced due to several reasons. First, most of the ex-
periments rely on ensamble magnetism measurements of
nanographenes (NG)51, defective graphene52,53, and elec-
trically detected spin resonance54, and these measure-
ments can be prone to artefacts arising from the pres-
ence of extrinsic magnetic impurities55. Second, bottom-
up synthesis of open shell nanographenes is in general
a low yield process, on account of the strong chemical
reactivity of radical species49. Third, the fabrication of
structures with well defined zigzag edges, using top-down
techniques was very challenging56, on account of the lack
of sufficient precision provided by chemical etching. A
significant step forward in this direction was made possi-
ble by creating ribbons unzipping carbon nanotubes, that
made it possible to study graphene ribbons with atomi-
cally defined edges using scanning tunneling microscopy
(STM)57.

Progress in bottom-up on-surface synthesis58 in ultra-
high vacuum has made it possible to synthetize
graphene nanostructures such as graphene ribbons
with zigzag edges59–61, expected to have edge mag-
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netism with antiferromagnetic correlations between op-
posite edges1,6,13,21, triangulenes with zigzag edges62–64,
expected8 to have ferromagnetic ground state, and
nanoribbon heterojunctions that host localized zero
modes65–67 that are expected to host local moments43,46.
Atomic manipulation of individual atomic hydrogen
chemisorbed on graphene, and the resulting changes in
dI/dV observed with STM, have been reported68 and
interpreted in terms of the emergence of a localized spin.

In most of these experiments60–68, STM dI/dV pro-
vides spectra with broad peaks, without positive-negative
bias symmetry, that are interpreted in terms of the tun-
neling to the HOMO-LUMO levels of the structures. In
some cases, comparison with DFT and GW calculations
yields a fairly good agreement57,60,68. The fact that these
calculations predict the existence of local magnetic mo-
ments provides indirect evidence for the emergence of
magnetism in these systems.

A much more direct evidence of local moment emer-
gence is the observation of steps in the dI/dV spectra,
observed at |e|Vbias = ±∆, where ∆ is the excitation
energy. If ∆ depends on the applied magnetic field, this
automatically implies that it corresponds to a spin excita-
tion, observed in single magnetic atoms on surfaces69–71,
in nano-engineered adatom chains72,73, or single mag-
netic molecules74–76. In some instances, variations of the
intensity of a given inelastic step across different atoms
in a given structure are observed, providing information
of the wavefunction of the spin excitation73,77 . These
symmetric inelastic steps can be understood in terms of
inelastic cotunneling theory78, and they probe the energy
difference between two many-body states with total spin
S1 and S2, with |S1−S2| = 0,±1 and |Sz1−Sz2| = 0,±1.
Supplemented with theory79,80, these experiments permit
to infer the spin Hamiltonian of the system.

STM inelastic spectroscopy showing features com-
patible with cotunneling steps have been reported in
nanographenes of various shapes with zigzag edges, such
as fused ribbons81,82 and the Clar’s goblet83,84. Fur-
ther evidence of the emergence of local moments in these
structures arises from the controlled addition of either
atomic hydrogen81,82 or pentagonal defects85 that leads
to the appearance of the Kondo peak. In the case of
fused ribbons81 and a triangulene fused to an acene82,
the appearance of the Kondo effect is accompanied by
the disappearance of the inelastic steps, compatible with
a transition of the ground state from S = 0 to S = 1/2
in the fused ribbon and S = 1 to S = 1/2 in the trian-
gulene. Intriguingly, cotunneling steps are conspicuously
missing in the spectra of triangulenes62–64 and graphene
ribbons with short zigzag edges60,61. Possible reasons for
this negative observation are discussed below.

The goal of this paper is to review the theoretical back-
ground for all this work and to elucidate to what extent
tunneling spectroscopy can probe local moments in many
graphene nanostructures. For that matter, we compute
the contributions to dI/dV of both sequential tunneling
and inelastic cotunneling and we relate them to the na-

FIG. 1: Scheme of the system of interest: an STM tip on top
of a nanographene deposited on a decoupling layer (red) on
top of a conducting substrate (grey).

ture of the many-body states of nanographenes deposited
on surfaces. The multielectronic states of nanographenes
are obtained by exact diagonalization of the Hubbard
model in a restricted configuration Hilbert space and the
coupling to both tip and substrate is treated to lowest
order in perturbation theory.

The rest of this paper is organized as follows. In sec-
tion II we review the relevant energy scales for sequen-
tial tunneling and cotunneling and we present an ex-
tended Hubbard model to describe nanographenes. In
section III we review the formalism for sequential tun-
neling and cotunneling transport. We illustrate sequen-
tial transport theory with calculations for the case of a
rectangular nanographene with edge modes. In section
IV we apply cotunneling theory to the case of three dif-
ferent diradical nanographene structures, for which there
are recent experiments: a rectangular nanographene60,
triangulene45,62 and the Clar’s goblet83,84. In section V
we discuss a number of open questions and aspects in
which further theory work is needed. In section VI we
wrap up the main conclusions.

II. THEORY

The main goal of this work is to describe, theoreti-
cally, electronic transport between an STM tip and a
nanographene deposited on a conducting substrate (see
figure 1). In the following we assume that electron tun-
neling events between the nanographene and both tip
and substrate are weak. Whereas this is a realistic as-
sumption in the case of the graphene-tip coupling, tun-
neling to the substrate may not be weak. The weak cou-
pling assumption is expected to work better in cases when
graphene is separated from the conducting substrate by
a decoupling insulating layer. This is the case of some
of the experiments60,62, but in most cases nanographenes
are deposited directly on a metallic substrate, in which
case the weak coupling theory may not be applicable, but
can still be used as starting point86.
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A. Sequential transport energy scales

Within the weak coupling hypothesis, current flows via
tunneling events of two types: sequential and cotunnel-
ing. Sequential processes entail classical charge fluctu-
ations of the nanographene: an electron tunnels from
tip to the nanographene, which is charged until another
tunneling event takes an electron from the nanographene
to the substrate. Since the nanographene is directly de-
posited on the metal surface, the efficiency of the Se-
quential Transport (ST) processes is governed by the
tip-graphene tunnel process, that acts as a bottleneck.
Energy conservation demands that:

µT + EG(N) = EG(N + 1) (1)

where the left hand of this equation is the energy of the
system with a quasiparticle at the tip Fermi energy (µT )
and the nanographene with N electrons, and the right
hand side is the energy when the quasiparticle has en-
tered the nanographene.

As the bias voltage (Vbias) is ramped, it will shift the
chemical potential of the electrodes (µη), where η ∈ S, T .
This shift can be assymmetric87, and here we will assume
that the bias will just affect µT in accordance to the much
larger capacitance of the surface. We thus assume:

µT = µS + |e|Vbias (2)

where µS,T are the chemical potentials of substrate and
tip, including the contact formation corrections when tip
and sample are made of different materials. Since tip
and substrate are conducting, we can identify chemical
potential and work function. Combining equations (1)
and (2) we conclude that sequential transport is allowed
for the (positive) bias voltage V+1:

E+ = |e|V+1 = EG(N + 1)− EG(N)− µS (3)

Signs are chosen so that for positive Vbias, electrons
move from tip to sample. For negative bias volt-
age, sequential transport events are controlled by pro-
cesses in which an electron in an occupied level of the
nanographene tunnels towards the tip. The minimal
(negative) voltage V−1 at which this occurs is given by
equation

EG(N) = µT+EG(N−1) = µS−|eV−1|+EG(N−1) (4)

which leads to the condition

E− = |eV−1| = EG(N − 1)− EG(N) + µS (5)

In this work, we compute these quantities using
an exact diagonalization of the Hubbard model for
nanographenes. We now briefly discuss how to estimate
the addition voltages in an independent particle picture,
such as non-interacting electron approximation, Hartree
Fock, and density functional based calculations. Under
this framework, we can write up:

EG(N + 1)− EG(N) = εLUMO

EG(N)− EG(N − 1) = εHOMO (6)

where LUMO and HOMO stand for lowest unoccupied
and highest occupied molecular orbitals. Thus, if equa-
tions (6) hold, we would write:

|e|V+1 = εLUMO − µS
|eV−1| = µS − εHOMO (7)

Within this picture, every time the positive (negative)
bias aligns with an empty (occupied) state, sequential
tunneling processes are possible. Thus, we can expect
peaks in the dI/dV when Vbias goes across these reso-
nances.

It is important to notice that unless the addition and
substraction energies (E±) are the same, the voltages
V+1 and V−1 will be different in magnitude and, hence,
sequential tunneling dI/dV peaks are not symmetrically
located around Vbias = 0. This is clearly the case of the
experiments of nanographenes placed on metals60,62,88,
see Table (I).

In the non-interacting picture, HOMO and LUMO lev-
els are symmetrically placed around the work function of
graphene, εLUMO = εC + δ

2 , εHOMO = εC − δ
2 , where δ

is the single-particle gap, and we can write:

|e|V+1 = εC +
δ

2
− µS

|eV−1| = µS − (εC −
δ

2
) (8)

So, the electron-hole symmetry condition, |e|V+1 =
|eV−1| would happen only if εC = µS . This situation
might occur for nanographenes deposited on graphene,
as long as the interaction effects are negligible.

In the case where single-particle theory predicts a
singly occupied zero mode, whose wavefunction is de-
noted by φ0, the Coulomb overhead of adding a second
electron in that orbital is given in the Hubbard approxi-
mation by30,46,47

Ũ = U
∑
i

|φ0(i)|4 (9)

which is a metric of the orbital delocalization. This ap-
plies for the case of monohydrogenated graphene68, very
long rectangular ribbons with zigzag edges on the short
side30,60, and triangulenes62–64, where transport occurs
via zero modes. In this case, we have:

|e|V+1 ' Ũ − (µS − εC)

|eV−1| ' µS − εC (10)

Thus, in the case of transport through zero modes, the
sum of the absolute values of the addition and substrac-
tion peaks is a metric of the Coulomb overhead associated
to the double occupancy of the zero mode, and thereby
its spacial extension. The compilation of experimental re-
sults shown in TableI suggests that Ũ is minimal for the
zero mode associated to hydrogenation of 2D graphene,
expected from theory44, and maximal for the triangulene
with 22 carbon atoms.
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TABLE I: Experimental position of Sequential Transport
peaks for several nanographenes

Structure E+(eV ) E−(eV )

[6]ribbon (NaCl/Au[111])60 1.3 0.5

[3]triangulene (Xe[111])62 1.85 1.4

[4]triangulene (Au[111])64 1.15 0.4

[5]triangulene (Au[111])63 1.07 0.62

H + graphene (SiC)68 0.014 0.007

Clar’s goblet (Au[111])84 1.0 0.3

B. Cotunneling energy scales

In addition to sequential tunneling events, trans-
port can also occur via cotunneling89: an electron en-
ters(leaves) the graphene nanoisland, initially in the state
Ei(N), turning it towards an excited state E(N±1) dur-
ing a Heisenberg time, and coherently in a second tun-
neling event a second electron steps out(in), in the other
electrode, and the island stays in the state Ef (N). This
process can be both elastic or inelastic, depending on
whether ∆ = Ef (N) − Ei(N) = 0 or else. Total energy
cannot change between initial and final state. Therefore,
inelastic processes are possible when bias voltage matches
the inelastic energy:

|eVcot| ≥ ∆ (11)

Thus, as |e|Vbias is increased, new inelastic cotunnel-
ing channels open, increasing the conductance in a step-
wise manner. This is the principle of cotunneling spec-
troscopy. Cotunneling contribution to conductance is in
general much smaller than sequential processes, on ac-
count of its non-resonant nature. Therefore, it is better
observed when the inelastic steps are away of the ST
peaks. Therefore, a condition for the cotunneling steps
to be observable is that their energy is much smaller than
the resonant peaks V±1. As we discuss below, this con-
dition is not always satisfied.

Importantly, cotunneling events include both spin-flip
and spin conserving processes78. Spin conservation en-
tails ∆S = ±1 or ∆S = 0. If ∆Sz = ±1, ∆ should de-
pend on a magnetic field applied along the z axis. There-
fore, the magnetic field dependence of the inelastic steps
provides an unambiguous proof of the spinful nature of
at least one of the two many-body states implied in the
excitation.

C. Hamiltonian

We now introduce an extended Hubbard model Hamil-
tonian. The systems of interest, shown in figure (2a),
are 3 types of nanographenes that are either diradical,
like the triangulene and the Clar’s Goblet, or have hy-
bridized zero modes, like the rectangular ribbon. The

single-particle part of the Hamiltonian is the standard
one orbital tight-binding model with first neighbour hop-
ping t for the π orbitals. Edge atoms are assumed to be
passivated with hydrogen. Electron-electron interaction
is treated with two terms. First, we add an on-site Hub-
bard repulsion U :

HHub = t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni↑ni↓ (12)

We denote the ground state energy of the manifold
with N electrons for the Hubbard model (12) by EG(N).
The Hubbard model ignores completely the long range
part of the Coulomb interaction. As a result, its addition
energies (EG(N ± 1) − EG(N) ∓ µS) are not correctly
captured by the model. Second, in order to address this
shortcoming, we adopt an heuristic solution and add an
extra term in the Hamiltonian (equation 13) that yields
the correct energies:

Hλ =
λ+ + λ−

2

(
N̂ −Ns

)2

+
λ+ − λ−

2

(
N̂ −Ns

)
(13)

where N̂ =
∑
σ,i c

†
i,σci,σ is the number operator, λ± are

two phenomenological parameters chosen to make sure
that the addition energies match those seen in the ex-
periment, and Ns is the number of carbon sites in the
nanographene.

In addition, we have the Zeeman coupling and the on-
site energy for carbon atoms:

HC +HZee = εC
∑
iσ

c†iσciσ +
1

2
gµB ~B · ~σ (14)

where ~B = (Bx, By, Bz) is an external magnetic field, g =
2, µB is the Bohr magneton and ~σ is the Pauli matrices
vector.

The STM tip is known to pull the atoms out90–94. As
a result the hopping energies of the atoms underneath
the tip are reduced because of the misalignment of the
π orbitals. We assume that this deformation only affects
to the one atom right under the STM tip, labeled with
the index 0:

Hdef = δt
∑
〈0,j〉,σ

(c†0,σcj,σ + h.c.) (15)

In the following, unless otherwise stated, we take δt =
−0.3t. This perturbation has a minor impact in both the
single-particle and many-body spectra, but, as we dis-
cussed below, it opens the otherwise closed cotunneling
channels for triangulenes.

Thus, the Hamiltonian for the nanographenes is the
sum of the Hubbard model, with the on-site and Zeeman
terms, plus the charging energy and the tip deformation
corrections:

HNG = HHub +HC +HZee +Hλ +Hdef (16)

In the following we label the eigenstates of HNG as |n〉
for the manifold with Ns π electrons and as |m±〉 for the
eigenstates with Ns ± 1.
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FIG. 2: a) Atomic structure of the three systems studied in
this work. From top to bottom: triangulene, Clar’s goblet
and a rectangular ribbon. Hydrogen atoms that passivate
edge carbons are not shown for clarity. b) Scheme of CAS
approximation. The red and white boxes represent the non-
active spaces, with molecular orbitals that are doubly occu-
pied and empty, respectively. The Active Space is marked by
states within the box. c) The 6 possible configurations in the
CAS(2,2) approximation.

D. Complete Active Space approximation

As we discuss below, the transport calculations take
as an input the multi-electronic eigenstates of (16). We
solve the Hubbard model with the Configuration Inter-
action (CI) method in the Complete Active Space (CAS)
approximation.

In the CAS method, we break down the single-particle
spectra, obtained from the diagonalization of the single-
particle part of the Hamiltonian (16) in 3 sectors: low
energy sector, Active Space and high energy sector (fig-
ure 2b). We build a basis of many-body Fock states with
well defined (0,1) occupation of the single-particle basis.
In all the Fock states in the basis, the occupation of the
low (high) energy sectors is 1(0), and they differ in the oc-
cupation of the Active Space. A CAS basis is defined by
the number of electrons Ne and the number of molecular
orbitals No (without accounting for spin degeneracy) in
the Active Space. For the charge neutral manifold |n〉 we
use Ne = No = 2 or Ne = No = 4, which leads to a CAS
basis of dimension

(
2No
Ne

)
= ( 4

2 ) = 6 (see figure 2c) and(
2No
Ne

)
= ( 8

4 ) = 70, respectively. For Ns±1 manifolds we
add or remove one electron.

Once the CAS basis is defined, we represent the many-
body Hamiltonian in that basis and diagonalize. This
gives us an approximate description of the eigenstates
of HNG. Importantly, the quantum states obtained in
this approach provide a full quantum description of mag-
netism, preserve the spin rotational invariance of the
Hamiltonian, and capture quantum spin fluctuations, un-
like the broken symmetry picture of the mean-field ap-
proximation. For instance, the S = 0 singlets are entan-

gled states that combine antiferromagnetically correlated
electrons that are linear superposition of ↑ and ↓ states.

III. TRANSPORT

In this section we review the theory of both sequen-
tial and contunneling transport. The starting point is
the definition of a Hamiltonian that includes both the
nanographene Hamiltonian, presented in the previous
section, the tip and substrate Hamiltonians, and their
coupling (see for instance87,95,96):

H = HT +HS +HNG + V (17)

The first two terms describe the electrons in tip and sub-
strate. We treat them in the independent electron ap-
proximation and we label their fermions with the oper-
ators (f†α, fα), where α ≡ {η, k, σ}, so η = S, T labels
the electrodes, k the momentum and σ the spin of the
quasiparticles. The third term HNG, given by equation
(16), describes the nanographene.

The last term, V, describes the tunneling of electrons
from the tip and the substrate to the nanographene:

V =
∑
α,i

(Vα(i)f†αciσ + h.c.) = VS + VT (18)

where Vη,k,σ(i) stands for the hopping matrix element
that connects a state in electrode η, with spin σ and
single-particle quantum number k, and the π atomic or-
bital of the carbon site i in the nanographene. Quasi-
particle spin is conserved in the tunneling processes. In
the case of tip-nanographene tunneling, the matrix ele-
ment depends strongly on i. We tipically assume that
only one carbon atom is coupled to the tip. In contrast,
unless otherwise stated, we assume that all carbon atoms
are equally coupled to the substrate states, so that VS,k,σ
does not depend on the site index i.

A. Sequential tunneling

The calculation of current in the sequential tunneling
approximation treats V in perturbation theory. The en-
ergy conserving tunneling rates that connect the neutral
states of the nanographene (|n〉) with the charged states
(|m±〉) are given by the Fermi’s golden rule87,96,97, that
emits/receives the tunneling quasiparticle:

Γηn→m+
=

2πρησ
h̄

nF (ξη)
∑
i,i′,σ

Vησ(i)V ∗ησ(i′)γm+
nn (ii′σσ)

(19)

Γηm+→n =
2πρησ
h̄

nF (−ξη)
∑
i,i′,σ

Vησ(i)V ∗ησ(i′)γm+
nn (ii′σσ)

(20)
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Γηn→m− =
2πρησ
h̄

nF (ξη)
∑
i,i′,σ

Vησ(i)V ∗ησ(i′)γm−nn (ii′σσ)

(21)

Γηm−→n =
2πρησ
h̄

nF (−ξη)
∑
i,i′,σ

Vησ(i)V ∗ησ(i′)γm−nn (ii′σσ)

(22)
where ξη = Em±−En∓µη, ρησ is the electrode density

of states, nF is just the Fermi-Dirac distribution func-
tion, and Vησ(i) are the electrode-NG matrix elements,
neglecting their dependence on the quasiparticle label k.
The γ matrices encode the height of the peaks in the
nanographene fermion spectral function:

γ
m+

nn′ (ii
′σσ′) = 〈n|ciσ|m+〉〈m+|c†i′σ′ |n

′〉
γ
m−
nn′ (ii

′σσ′) = 〈n|c†iσ|m−〉〈m−|ci′σ′ |n
′〉 (23)

The scattering rates (19,20,21,22) hence define tran-
sitions between states with different charge that will be
activated by bias when it matches the addition or sub-
straction energies. The dynamics of the occupation of the
NG many-body states is governed by a master equation:

dPl
dt

= −(
∑
l 6=l′

Γl→l′)Pl +
∑
l′ 6=l

Γl′→lPl′ (24)

where l labels the states n,m±.
Here we are interested in the case when the stationary

state is reached, i.e. when dP
dt = 0 and the intensity is

the same at both electrodes (IT = IS). This leads to the
expressions:

IT = e

∑
m+

Pm+

∑
n

ΓTm+→n −
∑
n

Pn
∑
m+

ΓTn→m+

(25)

or

IT = e

∑
n

Pn
∑
m−

ΓTn→m− −
∑
m−

Pm−
∑
n

ΓTm−→n

(26)

so for positive (negative) bias the charge fluctuations
occur via transitions betwen the N = Ns manifold with
the m+ (m−) states.

We now apply the theory to the case of a rectangu-
lar graphene flake with well defined edges, that has been
studied experimentally60. In figure (3a,b) we show the
calculated dI/dV curve and the population of the many-
body states as a function of bias. For a given polarity,
we obtain three peaks. The lowest energy peaks, labeled
with 1, correspond to the addition and removal ener-
gies given by equations (3) and (5). These peaks involve

FIG. 3: a) Conductance curves for sequential transport for
the rectangular nanographene shown in the inset of panel (c)
and the tip coupled to an edge atom, marked with the triangle
symbol. G0 is the quantum of conductance. b) Population
of the many-body states of neutral and charged manifolds as
a function of bias, obtained from the steady state solution of
equation (24). c) Scheme of the CAS(2,2) many-body energy
levels for the N = Ns (neutral) manifold and the N = Ns± 1
manifolds. The numbered arrows mark the transitions that
result in the conductance peaks in panel (a). t = −2.7eV ,
δt = −0.3t, U = |t|, εC = −5.7eV , CAS(2,2), T = 3K,
ρησ = 10/t, VS = t/100 and VT = VS/10.

transitions between two ground states of manifolds with
different charge. The values of λ± are chosen so that the
first addition and substraction energies (E±) match the
experimental observation60 (see TableI). Expectedly, the
peak positions are not electron-hole symmetric.

The higher energy peaks (labeled with 2, 3) correspond
to ground to excited transitions (3) and excited to excited
transitions (2):

ξS = |eVm±,n| = Em± − En ∓ µS (27)

In figure (3b) we show the occupation of the states
from manifolds with N = Ns, and N = Ns ± 1 as a
function of bias, obtained by solving the master equation
(24). It is apparent that the peaks in the dI/dV occur at
the same bias for which the charge of the nanographene
fluctuates. Thus, transport is enabled by a combination
via classical charge fluctuations and tunneling events be-
tween nanographene and the electrodes.

In the framework of sequential transport theory, the
width of the peaks is controlled by temperature. How-
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ever, the broadening observed in experiments is dra-
matically larger. Other than thermal smearing of the
electrode quasiparticles, the ingredients that contribute
to broadening, missing in sequential transport theory,
are two. First, since coupling to the electrodes is
treated at the lowest order, the spectral function of
the nanographene is made of infinitely narrow peaks.
Thus, coupling to the substrate induces quasiparticle
broadening86,98, not captured in the sequential tunnel-
ing approach. Second, and definitely relevant in the case
where a polar decoupling layer such as NaCl separates
graphene from the substrate60,99, the decoupling layer
vibrations are known to broaden the resonant tunneling
peaks100. In any event, this problem deserves further
attention.

B. Cotunneling formalism

We now briefly review the cotunneling formalism. We
follow previous work by one of us78. The first step in the
method entails the derivation of a new tunneling Hamil-
tonian where the charged states of the nanographene with
N 6= Ns, i.e. the manifolds |m±〉, are integrated out.
This leads to an effective tunneling Hamiltonian where
quasiparticles tunnel directly from tip to substrate, in-
ducing transitions between the many-body states of the
nanographene in the N = Ns manifold:

Hcotun =
∑
αα′

[Ô(+)
αα′ − Ô

(−)
α′α]f†αfα′ (28)

where the operator

Ô±αα′ ≡
∑
nn′

〈n|Ô(±)
αα′ |n

′〉|n〉〈n′| (29)

acts on the space of the multi-electron nanographene
states, with N = Ns. The matrix elements are given
by:

〈n|Ô(+)
αα′ |n

′〉 =
∑
ii′m+

Vησ(i)V ∗η′σ′(i
′)

Em+
− E0 − ε̄ηη

′

nn′

γ
m+

nn′ (ii
′σσ′) (30)

and

〈n|Ô(−)
αα′ |n

′〉 =
∑
ii′m−

V ∗ησ(i)Vη′σ′(i
′)

Em− − E0 + ε̄ηη
′

nn′

γ
m−
nn′ (ii

′σσ′) (31)

where ε̄ηη
′

nn′ =
µη+µη′+∆nn′

2 , ∆nn′ = En − En′ and γ
m±
nn′

are the spectral function weights, given by equation (23).
In the case of cotunneling, we assume Pn is given by

the Boltzmann equilibrium functions, and we ignore their
voltage dependence thereby. Finally, the calculated cur-

rent (equation 32) is given by the scattering rates (W ηη′

nn′ )
between different neutral states labeled as n and n′,
which depend on temperature, bias, electrode density of

states (ρησ), central system-electrode coupling, and cen-
tral system wavefunctions. The formula reads as

IT→S = e
∑
nn′

Pn(WS→T
nn′ −WT→S

nn′ ) (32)

where the scattering rates are then given by:

W ηη′

nn′ ≈
∑
σσ′

2πρησρη′σ′

h̄
G(µη − µη′ + ∆nn′)Σ

ησ,η′σ′

nn′ (33)

where G(x) = x
1−e−βx , β = 1

kBT
, and:

Σησ,η
′σ′

nn′ = |〈n|Ô(+)
ησ,η′σ′ − Ô

(+)
η′σ′,ησ|n

′〉|2 (34)

So, to sum up, the calculation of the cotunneling con-
ductance is carried out through the following steps:

1. Solution of the single-particle model to find the
molecular orbitals of a given nanographene.

2. Solution of the many-body problem, in a restricted
space of configurations defined by states with in-
teger occupation of the molecular orbitals, in the
manifolds with N = Ns, Ns ± 1.

3. Calculation of the matrix elements in equation (23),
the effective cotunneling Hamiltonian elements in
eqs.(30,31,34), the scattering rates in equation (33),
that permit to compute the cotunneling current
(32) for a given bias.

IV. COTUNNELING SPECTROSCOPY OF SPIN
EXCITATIONS IN NANOGRAPHENE

DIRADICALS

We now discuss the cotunneling inelastic elec-
tron tunneling spectroscopy (IETS) of three repre-
sentative nanographenes: a rectangular nanoribbon60,
triangulene62 and Clar’s goblet84 (see figure 2a). The
three of them are diradicals46,47. Clar’s Goblet and the
ribbon have both a S = 0 ground state whilst the tri-
angulene has a S = 1 triplet. Here we will infer in how
this technique results to be useful to demonstrate this
spin quantum number, and in last instance the sign of
the exchange for the expected local moments for these
molecules.

A. Rectangular graphene nanoribbons

We first consider a rectangular graphene nanoribbon
([6]ribbon in tableI) as those reported by Wang et al.60

This system presents two in-gap quasi-zero modes46 in-
side a large gap (figure 4a), whose wavefunction is
strongly localized at the zigzag edges (figure 4b). This
system provides an effective realization of a Hubbard
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FIG. 4: Tight-binding single-particle spectrum (a) and square of the wavefunction for the lowest energy in-gap molecular
orbital for the nanoribbon with t = −2.7eV , and δt = −0.3t for the atom at the left edge marked in the inset of panel (d).
Notice that, because of the tip-induced deformation, the molecular orbital has different weights at left and right edges. c) The
first 6 eigenstates calculated with the Hubbard model for U = |t| and CAS(2,2). The inset is a zoom, showing a transition
from the ground state to the first excited triplet state, labeled with 1. d) dI/dV curve. The singlet-triplet transition is seen
as a step, the black triangle points the atom where the tip is coupled. VS = t/100 and VT = VS/10, T = 3K, ρησ = 10/t
and εC = −5.7eV . e) Conductance curve for two different temperatures and an off-plane magnetic field (Bz). By applying a
magnetic field, the Zeeman effect splits step 1 in three. f) Map of the nanoribbon conductance when Vbias = −40mV .

dimer46, governed by two energy scales: the hybridiza-
tion energy, measured by the splitting of the in-gap states
δ, and the effective Hubbard repulsion, given by47:

Ũ = U
∑
i

|A(i)|4 (35)

where A(i) is the amplitude of the in-gap edge mode
at site i in the A sublattice. The effective Hubbard re-
pulsion is relatively independent of the ribbon width. In
contrast, the hybridization energy depends exponentially.
In the limit Ũ >> δ, the ground state is a correlated spin
singlet, separated from an excited triplet state by47,101

J ' δ2

Ũ
(36)

Our CAS calculations corroborate this picture (figure 4c).
For U = |t| we obtain J = 18meV . The dependence of J
on U is shown in figure (7a) of the AppendixA.

The cotunneling conductance, shown in figure (4d),
features an inelastic step at |e|Vbias = ±J , when the tip is
placed in an atom where the edge modes have sufficiently
large amplitude (panels (b) and (f) in figure 4). This
is ascribed to tunneling events in which energy is given
from the tunneling quasiparticles to excite the singlet-
triplet transition of the antiferromagnetically correlated
edge states.

The singlet to triplet nature of the inelastic step can
be confirmed upon application of a magnetic field that
splits the triplet72. As a result, the inelastic step splits
according to the rule

∆ = J + gµBBzSz (37)

where Sz can take 3 values, Sz = −1, 0,+1. This leads
to the appearance of 3 steps, instead of only 1, in the
cotunneling conductance shown in figure (4e).

The emergence of three steps unveils the S = 1 nature
of the excited state. In the case of a triplet ground state,
relevant for the triangulene discussed below, additional
steps appears instead at low bias |e|Vbias = ±gµB |Bz|,
coming from inelastic excitations within the ground state
manifold. Therefore, the absence of this feature, along
with the splitting of the inelastic step and the selec-
tion rules, is enough to determine the degeneracies of
the ground state and first excited state of the graphene
nanoribbon.

Scanning the inelastic step intensity across the
nanographene provides an additional tool to explore the
collective spin excitations of the nanographene with the
STM. As we show in figure (4f), the height of the conduc-
tance inelastic step highly depends on the lateral spatial
position of the tip. In figure (4f) we show the map for
Vbias = −40mV with Bz = 0. The IETS scan has a direct
correspondence with the wavefunction of the quasi-zero
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modes, further confirming the edge nature of the collec-
tive excitations.

In the discussion section we comment on why the in-
elastic steps predicted here have not yet been observed
experimentally in rectangular nanographenes60.

B. Clar’s goblet

We now apply cotunneling theory to the case of Clar’s
goblet or graphene bowtie. Clar’s Goblet102, shown in
figure (2a), is a diradical nanographene with S = 0
ground state, as expected47 on account of its lack of sub-
lattice imbalance. The single-particle spectra features
both bonding and anti-bonding states, separated by a
large gap, plus two in-gap zero modes that arise from the
fusion of two graphene fragments, with one zero mode
each, that remain unhybridized when they are fused to
form the bowtie (figure 5a,b).

The many-body spectra is very similar to the case of
the rectangular graphene nanoribbon discussed in the
previous section (see figure 5c). However, the singlet-
triplet splitting does not arise from kinetic exchange, as
δ = 0 for the bowtie. Exchange arises here from correla-
tions that involve the virtual excitations of single-particle
states other than the in-gap zero modes, and scales with
U247.

For the model considered here, we obtain a singlet-
triplet splitting ∆ = 11meV , for U = |t|. If we include
up to third neighbour hopping47, then ∆ increases. The
dependence of ∆ on U and on the third neighbour hop-
ping t3 is shown in figure (7b) of AppendixA. First prin-
ciples methods47 give ∆ = 20meV , whilst experiments
give 23meV . However, all these calculations ignore the
coupling to the substrate that might remormalize the ex-
change in nanographenes.

Our results for cotunneling spectroscopy are shown in
figure (5d) for λ± = 1.0 and λ± = 1.5eV . It is apparent
that, as λ± is increased, the height of the inelastic step
decreases, as expected given that cotunneling amplitude
scales inversely with the addition energies. In contrast,
the energy of the step does not depend on λ±, as λ± affect
the addition energies but not the excitation energies of
the N = Ns manifold. We also took µS as the work
function of the electrode, that was chosen as -5.4 eV for
Au.

In figure (5e) we explore the dependence of the dI/dV
as we change λ± to make the addition or removal mani-
folds lower in energy, deciding thereby the virtual chan-
nel, either electron or hole, that controls cotunneling.
We find that the slope of the cotunneling curve changes,
depending on the nature of the dominant cotunneling
channel. This originates from the bias dependence of the
addition and substraction energies, that controls the co-
tunneling amplitudes (see equations 30,31).

In figure (5f) we map the intensity of the inelastic steps
across the bowtie structure and we find it matches the
wavefunction of the zero modes, very much like in the

case of rectangular nanographenes.

FIG. 5: a) Tight-binding single-particle spectrum for the
Clar’s goblet with t = −2.7eV and δt = −0.3t for the atom
at the bottom edge, marked in the inset of panel (d), and
b) is the corresponding wavefunction for the zero modes. c)
The ground state and first excited triplet calculated with the
Hubbard model for U = |t| and CAS(4,4). The transition
from the former to the latter is represented by the arrow and
labeled by 1. d) dI/dV curve with λ± = 1.0eV (red) and
λ± = 1.5eV (blue). The black triangle points the atom where
the tip is coupled. e) dI/dV curve for different dominant
channels. VS = t/100, VT = VS/5, T = 3K, εC = −5.7eV ,
ρησ = 10/t and µS = −5.4eV . f) Map of the Clar’s goblet
conductance when Vbias = −15mV .

C. Triangulene

We now consider the triangulene shown in figure (2a)
with 22 carbon sites. This is known to be a diradical
with S = 151. Unlike the bowtie and the rectangular
nanographene, the triangulene considered here has a sub-
lattice imbalance, with 10 atoms in one sublattice and 12
in the other. As a result, the single-particle spectra fea-
tures two sublattice polarized in-gap zero modes12,37,47,
as shown in figure (6a). Their wavefunctions (figure
6b) can be chosen as eigenstates of the C3 symmetry
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FIG. 6: a) Tight-binding single-particle spectrum for triangulene with t = −2.7eV and δt = −0.3t for the atom at the bottom
edge marked in the inset of panel (d), and b) the corresponding wavefunction for the zero modes. c) The first 6 eigenstates
calculated with the Hubbard model for U = |t| and CAS(4,4). Transitions from the ground state to the 2 first singlet excited
states are represented as arrows and labeled by 1 and 2. d) dI/dV curve. The two first transitions from the ground state to the
singlet excited states are seen as two separated steps, the black triangle points the atom where the tip is coupled. VS = t/50,
VT = VS/10, T = 3K, ρησ = 10/t and εC = −5.7eV . e) Conductance curve with different off-plane applied magnetic fields, a
dip around 0 bias appears as a consequence of the Zeeman effect. f) Map of the triangulene conductance when Vbias = −310mV .

operator47. The molecular orbitals of these C3 symmet-
ric zero modes have the same modulus47, and therefore a
maximal overlap, that enhances ferromagnetic exchange.

The sublattice imbalance NA−NB = 2 implies8,50 that
the ground state of the triangulene, described with the
Hubbard model at half filling and first neighbour hop-
ping, has S = 1. The many-body spectra, calculated
with the CAS(4,4) approximation has a S = 1 ground
state followed by two degenerate singlets and then one
more singlet. The peculiar degeneracy of the lowest en-
ergy excitation is a consequence of the C3 symmetry.

When we compute the conductance for this symmet-
ric configuration, we obtain an extremely small height
of the inelastic step at the energy of the lowest triplet-
singlet excitation. We can gain some insight on the origin
of this result in the case of CAS(2,2). In this case, it can
be seen that the contribution to the cotunneling matrix
elements of the coupling between the triangulene and the
substrate is proportional to

∑
i φz(i). Interestingly, the

zero modes of undistorted triangulene can be chosen to
satisfy the identity

∑
i φz(i) = 0, which automatically

gives a vanishing cotunneling conductance. A finite, but
small, conductance is obtained in the CAS(4,4) approxi-
mation.

The cotunneling conductance is further increased if we
break the C3 symmetry, by assuming that the atom un-
derneath the tip is pulled out of the surface, reducing
its hopping with the first neighbours in the triangulene

(see equation 15). Upon this approximation the result-
ing single-particle wavefunction (figure 6b) has a larger
weight on the atom underneath the tip, and is no longer
true that

∑
i φz(i) = 0.

The resulting many-body spectra for the distorted tri-
angulene is shown in figure(6c). As a result of the distor-
sion, the excited states with S = 0 are no longer form-
ing a doublet, as obtained in the C3 symmetric case47.
The cotunneling conductance of the deformed triangu-
lene, with Bz = 0T , is shown in figure (6d). It has two
steps, corresponding to the inelastic excitation of the tri-
angulene S = 1 ground state towards the deformation-
split excited doublet with S = 0.

Application of a magnetic field brings an effect specific
of the S = 1 ground state. Because of the Zeeman split-
ting, the state with magnetic moment parallel to the ap-
plied field becomes predominantly dominated at low tem-
perature, and the others become depleted. This entails
a reduction of the elastic cotunneling contribution that
diminishes the zero bias conductance. In addition, a new
finite bias inelastic step appears for |e|Vbias = ±gµB |Bz|.
These two effects are shown in figure (6e). Observation
of this feature would provide a conclusive confirmation
of the S > 0 nature of the ground state. We believe this
effect has been observed by Li and coworkers82, although
they also observe a S = 1 Kondo peak that can only be
captured if we treat interaction with the substrate going
beyond the second order perturbation theory discussed
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above103.
In figure (6f) we show the map for the dI/dV signal

for Vbias = −310mV . As in the case of bowtie and rect-
angular nanoribbons, mapping the inelastic conductance
provides an additional variable to probe the excitations
and relate them to the zero modes, whose molecular or-
bitals are peaked at the edges.

V. DISCUSSION

A. Conditions for the observation of inelastic
cotunneling steps

Cotunneling theory predicts the observation of co-
tunneling steps in every structure for which the inelas-
tic excitation of the N = Ns manifold is significantly
smaller than the addition and substraction energy peaks.
Whereas this type of excitations have now been reported
in several structures81,82,84 they are conspicuously miss-
ing in all triangulenes62–64 as well as in the rectangular
ribbons59–61.

There are several factors that are known to reduce the
visibility of cotunneling steps:

1. Thermal broadening104, approximately given by
5.4kBT . This could blur the inelastic steps of low
energy excitations, such as the Zeeman split ground
to ground transitions in the triangulene, or the sin-
glet to triplet transitions of long rectangular rib-
bons for which exchange energy decays exponen-
tially with size46.

2. Lock-in voltage. The resolution of the inelastic
steps cannot be better than the lock-in voltage.
Therefore, application of lock-in voltages larger
than the inelastic excitations compromises their
visibility.

3. Excitation lifetime effects. Inelastic tunneling spec-
troscopy is probing the spectral function of the
collective excitations79. The poles of this spec-
tral function are broadened by the inverse of their
lifetimes. Kondo coupling to the substrate results
in a broadening proportional to the energy of the
excitation71,105.

4. Competition with sequential processes. The se-
quential tunneling is a resonant process, and there-
fore contributes much more strongly to the conduc-
tance. This could shadow inelastic steps whose en-
ergy is not sufficiently different from the sequential
peak.

In order to address the lack of experimental observa-
tion of cotunneling steps in S = 1, S = 3/2 and S = 2
triangulenes, that have been recently synthetized and
probed with STM63,64, we have computed their triplet-
singlet splitting. For U = |t| the excitation energies are

∆ = 260, 192, 146meV for S = 1, S = 3/2 and S = 2, re-
spectively. In figure (7c,d) of the AppendixA we show the
linear dependence of these energies on U . Inspection of
the experimentally observed values for the V− peaks show
that the visibility of the negative bias step for S = 3/2
might be compromised.

B. Symmetry and bias dependence

The cotunneling theory naturally yields curves that, in
addition to the step-like features when the bias matches
the excitation energies of the system, can have both a
superimposed finite voltage dependence away from the
inelastic steps and/or a very different height of the steps
for positive and negative bias. We refer to these two
features as bias dependence and asymmetry.

Bias dependence is a consequence of the fact that the
matrix elements in equations (30,31), that determine the
effective tip-surface tunneling amplitudes in the cotun-
neling Hamiltonian(28), feature the electrode-averaged
addition energies in the denominators78. When the bias
voltage is comparable with some of the addition energies,
these denominators could cancel. The cotunneling the-
ory is only valid far from these values. However, even
when the bias is away from these addition energies, these
denominators bring a voltage dependence that only dis-
appears when bias voltage is sufficiently far.

The cause of the asymmetry of the height of the steps
at positive and negative bias is quite different. The ulti-
mate origin of the asymmetry is the fact that coupling of
the nanographene to the tip and the substrate is not sym-
metric. Hand wavingly, the process by which an electron
tunnels from tip to one carbon atom and then tunnels
from any atom of the nanographene towards the sub-
strate has a very different amplitude from the reverse
process, by which an electron tunnels from surface to
any atom in the nanographene and then it tunnels from
one carbon atom to the tip.

Numerical evidence of these statements is presented in
the figure (8) in AppendixB. Figure (8a) shows a sym-
metric dI/dV cotunneling curve for a Hubbard trimer
symmetrically coupled to both electrodes. Figure (8b)
shows a mildly asymmetric conductance when the two
electrodes are connected to only one atom in a non-
equivalent configuration. Finally, an extremely asym-
metric conductance is obtained when the coupling to the
electrodes is very different (see figure 8c).

C. Kondo

As discussed above, the observation of zero bias peaks
at low temperature in some nanographenes81,82,85,106

provides a very strong evidence of the emergence of lo-
cal moments in graphene and their quenching via Kondo
interaction with the substrate. The Hamiltonian (28) is
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a generalized Anderson model that can in principle de-
scribe Kondo correlations if we compute current to higher
order in the graphene-electrode interaction103. This will
be the subject of future work.

VI. SUMMARY AND OUTLOOK

We have revisited both sequential tunneling and cotun-
neling theories, often used to model transport in quan-
tum dots87 and molecules96 , and discussed their ap-
plication to study STM spectroscopy of nanographenes
on surfaces. The main goal is to understand how
the STM dI/dV measurements can convey information
about the existence of local moments in the π electrons of
nanographenes. We have discussed in detail the case of
three classes of diradical nanographenes that have been
recently studied experimentally: rectangular nanorib-
bons, bowtie and triangulenes.

An important take home message is that sequen-
tial transport leads to peak features in dI/dV that re-
late to the addition and substraction energies of the
nanographenes and provide thereby no direct informa-
tion of the spin states. Sequential transport can be used
to infer the addition energy of a given frontier orbital, a
quantity that plays a role in the formation of local mo-
ments in nanographenes.

In contrast, cotunneling spectroscopy provides di-
rect information of the energies of neutral excitation of
nanographenes. These energies can provide direct evi-
dence of the formation of local moments, if supplemented
with magnetic field dependence experiments. Specifi-
cally, cotunneling spectroscopy could be in principle used
to determine if the spin of the ground state is finite: for
S > 0 ground state, application of a magnetic field can
result in a dip at zero bias. STM also permits us to map
the inelastic signal as the STM tip scans the molecules
laterally. As discussed above, the dI/dV maps so ob-
tained have a similar profile than zero modes that host
the unpaired electrons that form the local moments, high-
lighting their interconnection.

Both theory and STM experiments probing open shell
nanographenes indicate that emergent moments are gov-
erned by large energy scales. In the case of triangulenes,
the S = 1 ground state is separated from S = 0 excita-
tions by a gap of several hundreds of meV, although this
has not been observed experimentally yet. The S = 0
ground state of Clar’s goblet is separated by the S = 1
excited state by 23 meV, which implies an inter-molecule
exchange interaction of that magnitude47.

Advances in on-surface synthesis make it possible to
assemble larger structures that combine open shell frag-
ments with finite spin and large intermolecular exchange
interactions and to explore strong coupling carbon based
structures, with exchange interactions that can be both
ferro and antiferromagnetic. Given both the small mag-
netic anisotropy of carbon based magnetism34, as well as
their low dimensionality (0D, 1D or at most 2D), this

kind of artificial structures will provide an ideal platform
to explore quantum magnetism, very much like the case
of magnetic adatoms107,108.

Future theory work should address a more realis-
tic treatment of the nanographene-substrate interaction
that is able to provide a theory of the linewidth of
both sequential and cotunneling features, the observa-
tion of Kondo effect81,82, the effect of substrate induced
spin relaxation and decoherence109, and the renormal-
ization of the excitation energies due to Kondo cou-
pling to the substrate110. The interplay between lo-
cal moments in nanographenes and proximity induced
superconductivity39,111 should also be a fertile arena to
discover exotic new phases of matter.
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Guardiola, G. Catarina, J. C. Sancho-Garćıa, M.
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Appendix A: Dependence of the excitation energies
on U

In this Appendix we show the dependence on U of the
excitation energies in the N = Ns manifold for the 3
classes of systems considered in the paper (nanoribbon,
bowtie, triangulene). These enegies determine the bias
voltage at which inelastic steps appear. The results are
shown in figure (7). The different U dependence is dis-
cussed in the main text. In the case of the bowtie we also
compute the dependence of the excitation energy on the
third neighbour hopping t3 (see right panel of figure 7b).

Appendix B: Asymmetric inelastic steps height

As discussed in the main text, cotunneling spectra can
feature different height in the inelastic steps for positive
and negative bias. This is clearly seen in the rectangular
ribbon, and less clear in the triangulene. The qualitative
reason is discussed in the text and is ultimately due to
the asymmetry of the coupling of the nanographene to tip
and surface . A numerical validation of this statement is
shown in figure (8).
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FIG. 7: Splitting between the ground state and the first ex-
cited state for a) nanoribbon (CAS(2,2)), b) Clar’s goblet
(CAS(4,4)), c) S = 1 triangulene (CAS(2,2)) and d) S = 3/2
(CAS(3,3)) and S = 2 (CAS(4,4)) triangulenes, as function
of U . t = −2.7eV and εC = −5.7eV . No hopping distortion
was introduced here. For the Clar’s goblet, the dependence
with third neighbour hopping is also displayed in panel right
with constant t2 = −0.071eV and U = |t|.

FIG. 8: dI/dV curves for the Hubbard trimer when a) two
tips are linked to the side atoms, b) one tip is linked to a side
atom and a second tip to the center atom, and c) one electrode
is a tip and the other is a surface. CAS(3,3), EF = 0eV , t =
−1eV , U = 4|t|, Ed = −2.0eV , VS,T ′ = t/50, VT = VS/10,
ρησ = 10/t and T = 1K. Here both µη and µη′ are a function
of bias, so the bias dependence is avoided for clarity. This
calculation was performed without hopping distortion.
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