Excitonic magneto-optical Kerr effect in two-dimensional transition metal dichalcogenides induced by spin proximity

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/109975
Información del item - Informació de l'item - Item information
Título: Excitonic magneto-optical Kerr effect in two-dimensional transition metal dichalcogenides induced by spin proximity
Autor/es: Henriques, João C.G. | Catarina, Gonçalo | Costa, António T. | Fernández-Rossier, Joaquín | Peres, Nuno M.R.
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Transition metal dichalcogenides | Excitons | Proximity | Magneto-optical Kerr effect | Exchange pin splitting | Optical Conductivity
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 8-ene-2020
Editor: American Physical Society
Cita bibliográfica: Physical Review B. 2020, 101: 045408. https://doi.org/10.1103/PhysRevB.101.045408
Resumen: In this paper, we develop the excitonic theory of the Kerr rotation angle in a two-dimensional (2D) transition metal dichalcogenide at zero magnetic field. The finite Kerr angle is induced by the interplay between spin-orbit splitting and proximity exchange coupling due to the presence of a ferromagnet. We compare the excitonic effect with the single-particle theory approach. We show that the excitonic properties of the 2D material lead to a dramatic change in the frequency dependence of the optical response function. We also find that the excitonic corrections enhance the optical response by a factor of 2 in the case of MoS2 in proximity to a cobalt thin film.
Patrocinador/es: N.M.R.P. acknowledges support from the European Commission through the project “Graphene-Driven Revolutions in ICT and Beyond” (Ref. No. 785219), and the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2019. In addition, N.M.R.P. acknowledges COMPETE2020, PORTUGAL2020, FEDER, and the Portuguese Foundation for Science and Technology (FCT) through Projects No. PTDC/FIS-NAN/3668/2013, No. POCI-01-0145-FEDER-028114, No. POCI-01-0145-FEDER-029265, No. PTDC/NAN-OPT/29265/2017, and No. POCI-01-0145-FEDER-02888. G.C. acknowledges Fundação para a Ciência e a Tecnologia (FCT) for Grant No. SFRH/BD/138806/2018. G.C. and J.F.-R. acknowledge financial support from FCT through Grant No. P2020-PTDC/FIS-NAN/4662/2014. J.F.-R. acknowledges financial support from FCT for the P2020-PTDC/FISNAN/4662/2014, P2020-PTDC/FIS-NAN/3668/2014, and the UTAPEXPL/NTec/0046/2017 projects, as well as Generalitat Valenciana funding Prometeo2017/139 and MINECO Spain (Grant No. MAT2016-78625-C2).
URI: http://hdl.handle.net/10045/109975
ISSN: 2469-9950 (Print) | 2469-9969 (Online)
DOI: 10.1103/PhysRevB.101.045408
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 American Physical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1103/PhysRevB.101.045408
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailHenriques_etal_2020_PhysRevB.pdf845,06 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.