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Excitonic magneto-optical Kerr effect in two-dimensional transition metal
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In this paper, we develop the excitonic theory of the Kerr rotation angle in a two-dimensional (2D) transition
metal dichalcogenide at zero magnetic field. The finite Kerr angle is induced by the interplay between spin-orbit
splitting and proximity exchange coupling due to the presence of a ferromagnet. We compare the excitonic
effect with the single-particle theory approach. We show that the excitonic properties of the 2D material lead to
a dramatic change in the frequency dependence of the optical response function. We also find that the excitonic
corrections enhance the optical response by a factor of 2 in the case of MoS2 in proximity to a cobalt thin film.
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I. INTRODUCTION

Proximity effects have been known for decades [1], but
their true potential was only unleashed with the rise of two-
dimensional (2D) materials [2]. When working with bulk
materials, proximity effects are negligible, since the size
scale of the material is many orders of magnitude superior
to the scale along which proximity effects are noticeable,
relegating them to localized phenomena occurring within a
few nanometers [3]. Working with 2D materials, however, is
a strikingly different scenario. Their low dimensionality is
responsible for the enhancement of proximity effects. After
all, their thickness can be orders of magnitude inferior to the
length scale of those effects. This allows the wave function
of the material causing the proximity effect to totally engulf
the 2D system [4], thus drastically modifying its intrinsic
properties. These effects are responsible for inducing new
features in the adjacent regions, such as turning a nonmagnetic
material into a magnetic one, or giving rise to topologically
nontrivial properties where otherwise there were none [3–6].

Among the large variety of 2D materials, transition metal
dichalcogenides (TMDs) are some of the most prominent
and studied ones [7]. A monolayer TMD is composed of a
layer of transition metal atoms, situated between two layers
of chalcogen atoms, forming a trigonal prism structure. A
representation of the real lattice of a generic TMD is given in
Fig. 1. Contrary to graphene, the existence of different types
of atoms in each sublattice leads to the opening of gaps at the
corners of the first Brillouin zone. According to Ref. [8], these
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band gaps are of the order of 1 eV. Another aspect in which
TMDs differ from graphene is the existence of strong spin-
orbit coupling (SOC), due to the presence of heavy atoms with
d orbitals. To describe the band structure of these materials,
one uses a massive Dirac Hamiltonian, to which a SOC term
must be added. The existence of spin-orbit coupling is also
responsible for the coupling of spin and valley, which leads
to valley selective helicity in interband transitions [9]. A key
aspect to control the valley degrees of freedom is to break the
existing symmetry between the point K and K ′ at the corners
of the first Brillouin zone. Unfortunately, this proves to be an
extremely hard task when using an external magnetic field,
since fields as large as ∼10 T are necessary to produce a
minute splitting of ∼1 meV [10–15].

It is at this point that a proximitized TMD becomes an
entirely new system with the desired properties, since it has
been shown that proximity to a magnetic material produces
the needed valley splitting magnitudes [16]. Previous works
have already studied the valley manipulation due to proximity
to antiferromagnetic [17,18] and ferromagnetic [13,16,19]
substrates, as well as the effect of proximity to CrI3, an
ultrathin ferromagnetic semiconductor [14,15,20].

With the ability to control both the spin and valley degrees
of freedom by ingeniously choosing an adequate substrate, we
can explore magneto-optical effects, such as the Kerr rotation
angle in the absence of magnetic fields. Although these kind of
effects are vastly studied and used in bulk materials [22–24],
their true potential in 2D materials is yet to be fulfilled.
In this paper, we discuss the effects that proximity-induced
phenomena have in the band structure and optical conductivity
(both longitudinal and Hall) of a TMD. We show that the Hall
conductivity becomes nonzero when the valley symmetry is
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FIG. 1. Representation of the system considered in this paper:
a heterostructure composed of MoS2/hBN/cobalt thin film/quartz;
both a three-dimensional perspective and a transverse cut view of
the heterostructure are shown. The hBN is single layer and acts as
a buffer layer to protect MoS2 from direct contact with the metallic
cobalt thin film (three layers). An artistic view of an exciton formed
in MoS2 by the impinging electromagnetic radiation is also depicted.
The band structure of this heterostructure was first discussed in
Ref. [21].

broken due to proximity to a magnetic thin film. The finite
Hall conductivity is the key feature to obtain a nonzero Kerr
rotation angle.

This paper is organized as follows: We start in Sec. II
by introducing the model Hamiltonian that will be used
throughout the text, and apply it to the case of MoS2 on a
heterostructure composed of MoS2/hexagonal boron nitride
(hBN) single layer/cobalt thin film/quartz. Afterwards, in
Sec. III, we compute the absorbed power of a 2D material
from Fermi’s golden rule, for both linearly and circularly
polarized light, and establish its relation with different entries
of the conductivity tensor. Finally, in Sec. IV, we apply this
formalism to the study of the Hall conductivity, and later to the
Kerr angle, in the presence of excitonic effects. An Appendix
gives the transformation of the Bethe-Salpeter equation to real
space.

II. MODEL HAMILTONIAN AND BAND STRUCTURE

In this section, we introduce the model Hamiltonian that
will be used throughout the text, composed of the standard
Dirac Hamiltonian with finite mass to which a spin-orbit
contribution and an exchange term are added (a numerical
value of the latter has been determined from ab initio cal-
culations). We will be specific and consider the case of a
monolayer MoS2 heterostructure (see Fig. 1) composed of
MoS2/hBN single layer/cobalt thin film/quartz, a system for
which a giant magnetic exchange was found [21]. Following
that recent work [21], the cobalt thin film is composed of the
three layers. The hBN single layer is used as a buffer layer and
the cobalt provides the proximity-induced exchange. Since
both the cobalt and the hBN are extremely thin, we assume
that most of the screening of the electric field between the
electron and the hole is provided by the quartz (or otherwise)
substrate.

A. Model

To describe our system we adopt a low-energy effective
Hamiltonian with the structure H = H0 + HSOC + Hex, where

H0 is the usual Dirac Hamiltonian, HSOC describes the spin or-
bit coupling, and Hex characterizes the exchange splitting due
to magnetic proximity effects. When written explicitly, and
in agreement with Refs. [9,16,25,26], the total Hamiltonian is
given by

H = vF h̄(τkxσx + kyσy) + m

2
σz

+ τ sz

(
λc

1 + σz

2
+ λv

1 − σz

2

)

− sz

(
Bc

1 + σz

2
+ Bv

1 − σz

2

)
, (1)

where vF is the Fermi velocity; h̄ is the reduced Planck’s
constant; τ = ±1 is the valley index referring to the K and
K ′ valleys, respectively; sz = ±1 is the spin index labeling
spin up and spin down, respectively; σx, σy, σz are 2 × 2 Pauli
matrices; kx and ky are the x and y components of the wave
vector k; m is the band gap when no other contributions are
considered; λc and λv characterize the spin-orbit coupling
splitting in the conduction and valence band; and Bc and Bv

describe the effective exchange splitting for the conduction
and valence band, respectively, induced by proximity (these
parameters can be determined using ab initio methods, as
noted before).

Solving the eigenproblem H |uτ,sz
α 〉 = Eα|uτ,sz

α 〉, with α =
{c, v} (or α = ±1, respectively, depending on the context),
one easily obtains

∣∣uτ,sz
c

〉 =

⎛
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c√

(Mτ,sz
c )2+v2

F h̄2k2

τvF h̄keτ iθ√
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c )2+v2
F h̄2k2

⎞
⎟⎠, (2)

and

∣∣uτ,sz
v

〉 =

⎛
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−τvF h̄ke−τ iθ√
(Mτ,sz

v )2+v2
F h̄2k2

Mτ,sz
v√

(Mτ,sz
v )2+v2

F h̄2k2

⎞
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with tan θ = ky/kx, Mτ,sz
c = m/2 + Bvsz − λvszτ + Ec, and

Mτ,sz
v = m/2 − Bcsz + λcszτ − Ev , considering

Eα = sz[(λc + λv )τ − (Bc + Bv )] + α

√(
ζτ,sz

2

)2

+ v2
F h̄2k2,

(4)
where ζτ,sz = m + sz(Bv − Bc + λcτ − λvτ ) is the gap be-
tween the valence and conduction band for a specific choice
of τ and sz.

The total electronic Hamiltonian is the sum of H with the
Rytova-Keldysh potential, defined as [27,28]

V (r) = e2

4πε0

π

2

1

r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (5)

where r0 ∼ dε/2, with d and ε the thickness and dielectric
function of the 2D material, respectively (microscopically, r0

relates to the polarizability of the 2D system); κ is the mean
dielectric function of the media surrounding the 2D material;
ε0 is the vacuum permittivity; e is the elementary charge; and
H0(x) is the Struve function, and Y0(x) is the Bessel function
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TABLE I. Parameters used throughout the text for the Hamil-
tonian of MoS2 near a cobalt thin film. Besides the parameters
shown, we also considered an effective mass m∗ = 0.5m0, with m0

the bare electron mass, and a mean dielectric constant of the substrate
(quartz) and capping layer (vacuum) of κ = 2.45. Although these last
parameters do not appear in the independent-particle Hamiltonian,
they are necessary to compute the binding energies of the excitons in
the considered apparatus, as they appear in the interaction potential
energy. All the parameters, except the effective mass, were taken
from Ref. [21], where a giant exchange for MoS2 on cobalt (three
layers) was found. The value of the effective mass used was taken
from Ref. [29] for MoS2.

Variable Value Variable Value

m 1.759 eV Bc 1.964 meV
λc −1.361 meV Bv 6.365 meV
λv 72.96 meV vF h̄ 3.52 eV Å

of the second kind. This potential is the solution of the Poisson
equation for a thin film embedded in a medium.

B. Band structure of the heterostructure of MoS2

Using the energy spectrum obtained in Eq. (4), and the
realistic parameters of Table I, we plot in Fig. 2 the valence
and conduction bands in the vicinity of the K and K ′ valleys,
for both spin-up and spin-down states. The figure is com-
posed of two distinct cases: when only spin-orbit coupling is
considered (top row); and when both spin-orbit coupling and
proximity-induced exchange splitting are included (bottom
row). Studying the top row, we see that we no longer have the
two degenerate spin bands characteristic of a Dirac Hamilto-
nian, since the presence of spin-orbit coupling breaks the sym-
metry between the two different spin states. This effect lifts
the spin degeneracy and unfolds each band in two. The energy
difference between spin-up and spin-down states is �c

spin =
2λc for the conduction band, and �v

spin = 2λv for the valence
band. Comparing the bands of the K and K ′ valleys, we
observe that, although the bands associated with spin up and
spin down are switched, the valleys have a symmetric band
structure, that is, only the role of the spins is interchanged be-
tween the two valleys. This is a consequence of time-reversal
symmetry. Studying the bottom row, we realize that bands that
were once aligned are now shifted relative to each other due
to the exchange interaction induced by the magnetic proximity
effect. The relative shifts are �c

valley = 2Bc for the conduction
band, and �v

valley = 2Bv for the valence band. The presence
of this proximity effect is thus responsible for breaking the
valley symmetry, which leads to a quite different interaction
of the TMD with the two types of circularly polarized light.
Consequently, this disparity in the interaction with both kinds
of circularly polarized light allows us to exploit some material
properties that were otherwise inaccessible, such as a finite
optical Hall conductivity, in the absence of a magnetic field.

We next present in Table II the gaps associated with
every considered transition, in the case where both spin-orbit
coupling and exchange splitting are considered (introduced
before as ζτ,sz ). These values will be useful for future ref-
erence. Analyzing the presented data, one quickly realizes

FIG. 2. Band structure near the Dirac cones for MoS2 near a
cobalt thin film, using Eq. (4), and the parameters of Table I. To allow
an easier visualization of the different gaps, the parameters of Table I
were changed to 15Bc, 5Bv , and 10λc. These changes make the gaps
more perceptible, while keeping their relative order, as well as the
relative magnitude between the parameters, the same. The figure is
structured as follows: The left plots refer to the K valley, while the
right ones to the K ′ valley; the top row was plotted considering only
spin-orbit coupling effects, while the bottom row was plotted with
both spin-orbit coupling and exchange splitting considered. All plots
are presented with the same scale, with the energies h̄ω and wave
vector k given in arbitrary units. Looking at the top row, we can
see that the presence of spin-orbit coupling lifts the spin degeneracy,
and splits each band into two. The bands of spin-up and spin-down
states are split by �

c/v
spin = 2λc/v for both valleys. The only difference

between the two valleys is the swap of the spin-up and spin-down
bands. Studying the bottom row, we realize that the presence of
exchange splitting breaks the valley symmetry, and the bands that
were previously aligned are now shifted by �

c/v
valley = 2Bc/v .

that, as expected, in the absence of exchange splitting, that
is, when Bc = Bv = 0, the two valleys are again equivalent
in terms of gap values. Furthermore, it becomes clear that it
is the difference (Bc − Bv ) that actually controls the valley
asymmetry.

III. OPTICAL CONDUCTIVITY

In this section, we obtain the absorbed power, from Fermi’s
golden rule, for both linearly and circularly polarized light.
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TABLE II. Analytical expressions and numerical value for the
gaps of the transitions (τ, sz, v) → (τ, sz, c), that is, the transition be-
tween the valence and conduction band, for a state of spin projection
sz in the valley τ for MoS2. Working in the limit of vertical transitions
we ignore transitions from the valley τ to −τ . No spin flips are
considered. The numerical values were obtained using Table I. This
table emphasizes that the asymmetry between the two valleys (seen
on the bottom row of Fig. 2) is governed by the difference between
Bc and Bv .

(τ, sz, v) → (τ, sz, c) Expression ζτ,sz Value (eV)

τ = 1, sz = 1 m + λc − λv − Bc + Bv 1.689
τ = 1, sz = −1 m − λc + λv + Bc − Bv 1.829
τ = −1, sz = 1 m − λc + λv − Bc + Bv 1.838
τ = −1, sz = −1 m + λc − λv + Bc − Bv 1.680

Afterwards, we establish the relation between the absorbed
power and the conductivity tensor. The ultimate goal is the
calculation of the optical conductivity in both the noninteract-
ing (see Supplemental Material [30]) and interacting limits for
both linearly and circularly polarized light.

For the sake of clarity, a comment on notation is now in
order. When referring to circularly polarized light, we will
label the two orthogonal components as σ̃±. Later in this paper
we will define conductivities also labeled by the greek letter
σ , namely, σ±. To avoid confusion between conductivity and
polarization, it should be clear that when a tilde (∼) is used,
we are labeling a polarization component, and when it is not
we are referring to conductivities.

A. Fermi’s golden rule and absorbed power

Let us start defining the light’s electric field as

E = 1
2 (E0eiωt + E∗

0e−iωt ), (6)

and work in the dipole approximation, such that the interac-
tion between light and matter is given by Hint = −er · E.

From Fermi’s golden rule, one obtains the transition rate
between two different states. If we multiply the transition rate
by the energy associated with the said transition, and sum over
all initial and final states, we obtain the total power absorbed
by our system, which is given by

P = 2π

h̄

1

4

∑
i, f

|h̄ωi f ||〈 f |er · E0|i〉|2

× [δ(h̄ω − h̄ωi f ) + δ(h̄ω + h̄ωi f )], (7)

where P is the power absorbed; the sum is made over all initial
(i) and final ( f ) states; and h̄ωi f = Ei − E f is the difference
between the initial and final state energies. Equation (7) is
valid for systems with mean occupation numbers 1 and 0 for
the initial and final states, respectively, such as, for example,
the transitions between a full valence band and an empty
conduction band. If this is not the case, one must add a term
which takes into account the mean occupation of the states.
Although we present two delta functions in all equations, we
will only work with positive frequencies, making one of the
delta functions redundant.

Let us now consider the case of linearly polarized light.
The electric field’s amplitude for this type of polarization is
E0 = E0ûx, with ûx the unit vector of the x axis. Thus, the
absorbed power is given by

Px = π

2h̄
e2E2

0

∑
i, f

|h̄ωi f ||〈 f |x|i〉|2

× [δ(h̄ω − h̄ωi f ) + δ(h̄ω + h̄ωi f )]. (8)

For circularly polarized light the amplitude of the electric
field is E0 = E0(ûx ± iûy)/

√
2, for σ̃± polarization, and the

absorbed power is

P± = π

4h̄
e2E2

0

∑
i, f

|h̄ωi f ||〈 f |x ± iy|i〉|2

× [δ(h̄ω − h̄ωi f ) + δ(h̄ω + h̄ωi f )], (9)

with ûy the unit vector of the y axis.

B. Relation between the absorbed power and the conductivity

Now that the expressions for the power are determined, we
want to establish their relation with the conductivity. To this
end we define the current density vector as

J = 1
2 (J0eiωt + J∗

0e−iωt ), (10)

with J0 = ¯̄σE0, where ¯̄σ is the conductivity tensor given by
(for an isotropic system)

¯̄σ =
(

σxx1 + iσxx2 σxy1 + iσxy2

−σxy1 − iσxy2 σxx1 + iσxx2

)
, (11)

where σxx is the longitudinal conductivity, σxy is the Hall
conductivity, and the indices 1 and 2 refer to the real and
imaginary parts, respectively. We can now take advantage of
these two expressions to calculate the power absorbed in a
different way. To this end, we need to integrate over the area
A of our material the dot product J · E, and take the average
over one period T . A simplified way of writing this is

P = 〈P(t )〉T = 1

2

∫
A

dA Re(J∗
0 · E0), (12)

with E0 and J0 defined in agreement with Eqs. (6) and (10).
One can now use this expression to establish the relation
between the absorbed power and different elements of the
conductivity tensor ¯̄σ.

For linearly polarized light, with E0 = E0ûx, one can easily
obtain

σxx1 = 2Px

AE2
0

, (13)

which gives a direct relation between the power absorbed with
linearly polarized light and the real part of the longitudinal
conductivity.

For circularly polarized light, with E0 = E0(ûx ± iûy)/
√

2,
one obtains

σxx1 = P+ + P−
AE2

0

, (14)

σxy2 = P− − P+
AE2

0

. (15)
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Now that everything is set up, we can start the explicit
calculation of the optical conductivity. For the noninteracting
limit this is done in the Supplemental Material [30].

IV. EXCITONIC EFFECTS IN THE KERR ANGLE

Up to this point we have considered a general approach.
From now on we will build on what has already been done for
the noninteracting case (see Supplemental Material [30]) and
expand it to the interacting case, where excitonic effects will
be considered (see the Appendix for further information on the
solution of the excitonic problem). In this section, we use the
formalism developed in the Appendix for solving the 2D Wan-
nier equation, where we show how it can be obtained from the
Bethe-Salpeter equation (see also Ref. [31]). Afterwards, we
will use a semianalytical method to compute the longitudinal
and Hall optical conductivities considering excitonic effects,
for both linearly and circularly polarized light. Finally, we
study the effect of excitons on the Kerr rotation angle and
show that it is larger than that for thin cobalt films by about
one order of magnitude.

Continuing the work presented in Sec. III, we write the
conductivities [31] σxx, σ+, and σ− in the general form

σ
τ,sz
μ

σ0
= 4i

∑
ν

|ζτ,sz + Eν |�μ
ν

(
1

h̄ω − ζτ,sz − Eν + iη

+ 1

h̄ω + ζτ,sz + Eν + iη

)
, (16)

with μ = {xx; +; −}; ζτ,sz = m + sz(−Bc + Bv + λcτ − λvτ )
is the gap between the valence and conduction band for
a given combination of valley τ and spin sz; and Eν is
the exciton energy level associated with the quantum num-
ber ν (including both the principal and magnetic quantum
numbers). Only three magnetic quantum numbers produce a
nonzero result, m = 0 and m = ±2, the largest contribution
being, by far, that of m = 0; η is the nonradiative decay
rate, encompassing all possible decay channels; finally, the
element that differs depending on the desired conductivity is
�μ

ν , defined as A|〈ν, Q|r · êμ|GS〉|2, with A the area of the 2D
material, and r · êμ equal to x, (x + iy)/

√
2, and (x − iy)/

√
2,

for the cases of σxx, σ+, and σ−, respectively. The ket |ν, Q〉 is
defined as

|ν, Q〉 = 1√
A

∑
k

φν (k)a†
k+Q,cak,v|GS〉, (17)

where |GS〉 stands for the electronic ground state of the TMD,
that is, a filled valence band and an empty conduction band
(for more details, see the Appendix). The matrix element is
promptly computed writing the position operator in second
quantization.

To compute the exciton binding energy of MoS2 on a
substrate of quartz in the vicinity of a thin cobalt film, we
used a mean dielectric constant κ = 2.45 and a screening
parameter r0 = 41.4 Å (also, for the numerical solution of
the Wannier equation, we have used �min = −1, �max = 5,
N = 100, and A = 6; see the Appendix for the method of
solving the Wannier equation). A binding energy of 0.316 eV
was found for the exciton. Inserting the computed binding

FIG. 3. Representation of σxx1, σ+,1, and σ−,1, defined as in
Eq. (16). It is easy to see that, as expected, σxx1 can be obtained from
the mean of σ+,1 and σ−,1. The linear conductivity in the noninteract-
ing limit is also shown. It should be noted that the noninteracting line
was shifted by 316 meV (the exciton’s binding energy) in order to
bring all the plots to the same spectral region. Comparing them, one
realizes that their line shape is severely modified by the presence of
excitons. It is also worth noting that the large splitting (∼140 meV)
between the two sets of peaks is due to spin-orbit coupling effects,
while the small splitting (∼9 meV) is a consequence of the valley
asymmetry induced by proximity. One final remark should be made:
While constructing the plots for σ+,1 and σ−,1, the absence of an
interaction of σ+,1 (σ−,1) with the K ′ (K) valley was observed.
Only excitonic peaks with quantum numbers n = 1, and m = 0 were
considered. All conductivities are presented in units of graphene
universal conductivity σ0 = e2/4h̄. The variables of Table I were
used, and a nonradiative decay rate η = 20 meV was considered. The
precise energies where the excitonic resonances appear are presented
in Table III. Similar results have been reported in Ref. [26].

energy into Eq. (16), and taking the real part only, one obtains
the plots presented in Fig. 3.

These plots show an interesting behavior, as the presence
of excitons produces major changes in the conductivities’
line shape relative to the noninteracting limit. Indeed, we
can also divide the figure in two sets of peaks separated by
approximately 140 meV. This large splitting between the two
sets of peaks is a direct consequence of spin-orbit coupling,
while the small splitting within each set is due to the break-
ing of valley symmetry induced by proximity. Therefore, an
experiment measuring the absorption of circularly polarized
electromagnetic radiation will be able to unveil the value of
the exchange interaction. Using the information of Table III,
one realizes that, when only excitons with n = 1 and m = 0

TABLE III. Energies at which the excitonic resonances appear in
Fig. 3. The data presented emphasize how σ+,1 and σ−,1 are valley
selective, since the excitonic resonances of σ+ are associated with
the K valley (τ = 1), and the ones of σ− are associated with K ′ (τ =
−1). The origin of the different splittings of the excitonic peaks is
also made clear.

τ sz E τ,sz
g + Eν − m

σ+ 1 1 −386 meV
1 −1 −246 meV

σ− −1 1 −237 meV
−1 −1 −395 meV
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FIG. 4. Representation of both real (left panel) and imaginary
(right panel) parts of the Hall conductivity, obtained from Eq. (18).
When we compare these plots with the ones for the noninteracting
theory (represented by the dashed lines), we realize, quite unexpect-
edly, that the presence of excitonic effects induces a swap of behavior
between the real and imaginary parts of the Hall conductivity, while
keeping a similar magnitude. We should note that, similarly to what
was done in Fig. 3, the plots of the noninteracting limit were shifted
by 0.316 eV, in order to show all the plots in the same energy
range. All the conductivities are presented in units of graphene
universal conductivity σ0 = e2/4h̄. The variables of Table I were
used, and a nonradiative decay rate η = 20 meV was considered for
the interacting (excitonic) calculation.

are considered, the conductivities σ+,1 and σ−,1 are valley
selective, since σ+,1 only couples with the K valley (τ = 1),
and σ−,1 couples with the K ′ valley (τ = −1).

As was mentioned before, and is visible in Fig. 3, the mean
of σ+,1 and σ−,1 gives us the real part of the longitudinal con-
ductivity. In a similar procedure, and according to Eq. (15),
their difference gives access to the imaginary part of the Hall
conductivity. In fact, the full expression for σxy is given by

σxy =
(

σ+,2 − σ−,2

2

)
+ i

(
σ−,1 − σ+,1

2

)
, (18)

where σ±,1 = 2P±/(AE2
0 ), the imaginary part is the expres-

sion presented in Eq. (15), and the real part is readily obtained
from a Kramers-Kronig transformation. Both the real and
imaginary parts of the Hall conductivity are plotted in Fig. 4.
In the same figure, the independent particle approximation is
also depicted as thin dashed lines.

The analysis of the data depicted in the figures shows that,
curiously enough, when passing from the noninteracting case
to the one where excitonic effects are taken into account, an
(approximated) inversion of behavior occurs between the real
and imaginary parts of σxy. If we compare σxy1 with excitons,
with σxy2 in the noninteracting case, the former appears to be
a smoothed out version of the latter. The same goes for σxy2

with excitons, and σxy1 without them.
The difference between the optical conductivities com-

puted with and without excitonic effects can be understood
by taking a closer look at Fig. 3. Looking at the difference
between σ−,1 and σ+,1, we see that, at lower energies, both
conductivities are close to zero. Then, σ−,1 starts to outgrow
σ+,1 until the former reaches a maximum, which means that
σxy2 also reaches a maximum. Next, σ−,1 decreases, and σ+,1

increases, which leads to σxy2 = 0 when the lines intercept,
and afterwards to a minimum of σxy2, when σ+,1 reaches
its maximum. Subsequently, σ−,1 decreases, and both con-
ductivities are, again, close to zero. From this point onward

FIG. 5. Representation of the Kerr angle, when excitonic effects
are considered, using Eq. (5), and the conductivities previously
obtained in Fig. 4. We show the Kerr angle for two substrates, quartz
and sapphire, and verify that as the substrate dielectric constant
increases, the Kerr angle intensity decreases. Although in principle
one should consider the effects of the hBN layer and cobalt thin
film, we consider the substrate contribution as the dominant one, and
discard the effect of the other two materials.

the process happens in reverse order. Comparing now this
description with Fig. 4, we realize that this is precisely the
behavior presented by σxy2.

Now that the conductivities are determined, we can move
on to calculating the effect of excitons on the Kerr angle. It
can be shown [32] that, in the limit of small angles, the Kerr
angle is related to the linear and Hall conductivity through the
following equation,

θK = Re

(
2cμ0σxy

(ε − 1) + �

)
, (19)

where ε is the dielectric constant of the substrate, c is the light
speed in vacuum, μ0 is the vacuum permittivity,

� = 2
√

εcμ0σxx + c2μ2
0

(
σ 2

xx + σ 2
xy

) + 2icμ0σxy, (20)

and σxx and σxy are the conductivities previously defined. We
should note that in Ref. [33] it has been experimentally shown
that even the presence of a single graphene layer is enough to
substantially change the exciton binding energies. Here, due to
the complexity of the considered apparatus, it is no easy task
to give a full description of the effects of the hBN layer, the
cobalt thin film, and the substrate on the TMD. We do believe,
however, that the effect of the substrate dominates over all
others, and thus only consider its contribution to the problem.
Using Eq. (19) and the conductivities formerly obtained, we
compute the Kerr angle plotted in Fig. 5.

As expected, since ε is far greater than any other element
on the denominator of Eq. (19), the Kerr angle takes its
shape from the real part of the Hall conductivity. We can also
see that as the environment’s dielectric screening increases
(when passing to a sapphire substrate), the Kerr angle inten-
sity decreases. Regarding the magnitude, we obtain a Kerr
angle that is orders of magnitude higher than the ones from
Refs. [34,35], where a 2D electron gas is studied (at 10 K
in the case of Ref. [35]). If the broadening parameter was
reduced, then the Kerr angle magnitude would be even larger.
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The 20 meV considered in this paper is a conservative value,
and TMDs encapsulated in hBN can have broadenings as low
as 2 meV [36].

We also note that in Ref. [37] the Kerr angle for a 4-nm-
thick cobalt film was measured, presenting a magnitude one
order of magnitude smaller when compared to the values of
Fig. 5. Therefore, an experiment made in the system proposed
in this paper will essentially probe the Kerr effect due to the
TMD.

In Ref. [38] the Kerr angle was studied for bilayer MoS2. In
this paper, an electric field was applied perpendicularly to the
samples, which led to the spatial separation of the K and K ′
valleys. When a spatial map of the Kerr angle was constructed,
negative values were observed for the Kerr angle, followed by
positive ones, similar to the plot of Fig. 5.

V. CONCLUSIONS

In this paper, we have studied the effects produced
on a MoS2 band structure due to proximity to a cobalt
ferromagnetic thin film (three layers), more specifically,
the case of MoS2 on a heterostructure composed of
MoS2/hBN/Co/quartz was studied.

We started using an effective low-energy Hamiltonian,
composed of a massive Dirac Hamiltonian, a spin-orbit cou-
pling term, and an exchange contribution, to theoretically
describe the changes that the TMD band structure undergoes
when placed in the vicinity of a ferromagnetic thin film. We
have verified that, in the presence of magnetic proximity ef-
fects, the valleys K and K ′ have an asymmetric band structure,
leading to different interactions with the two components of
circularly polarized light.

Using Fermi’s golden rule, we then proceeded to the
computation of the longitudinal conductivity σxx, and Hall
conductivity σxy in the noninteracting limit (the results can
be found in the Supplemental Material [30]). The existence of
a finite Hall conductivity is a direct consequence of the asym-
metry between the K and K ′ valleys produced by proximity
effects. Afterwards, we presented a semianalytical method
that allowed us to extend our work in the noninteracting limit
to the case where excitons are present. Using this method,
we once more computed the optical conductivities, but now
taking into consideration the excitonic effects. Once again,
we obtained a nonzero Hall conductivity due to the different
interactions of the two components of circularly polarized
light with the TMD. An intriguing finding appeared when
the plots of the Hall conductivity in the noninteracting and
in the interacting limits were compared. Looking at Fig. 4,
it is possible to see that an inversion of behavior between
the real and imaginary parts of the Hall conductivity takes
place when passing between these two limits, that is, if we
compare σxy1 with excitons, with σxy2 in the noninteracting
case, the former appears to be a smoothed out version of
the latter. The same happens for σxy2 with excitons and σxy1

without them. This inversion is a direct consequence of the
dramatic change of the line shape of the optical conductivity
when excitonic effects are included.

Finally, we used the Hall conductivity containing excitonic
effects to obtain the Kerr rotation angle. Since the Kerr
rotation angle has a direct dependence on σxy, it can only be

explored when an asymmetry between the valleys is induced,
that is, when the TMD is proximitized.
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APPENDIX: FROM BSE TO THE WANNIER
EQUATION AND ITS SOLUTION

In second quantization, the state of an exciton of momen-
tum Q, in motion in a TMD monolayer of area A, can be
written as

|ν, Q〉 = 1√
A

∑
k

φν (k)a†
k+Q,cak,v|GS〉, (A1)

where the state |GS〉 represents the electronic ground state of
the TMD, that is, a filled valence band and an empty con-
duction band; φν (k) is the Fourier transform of the real-space
exciton wave function, with ν representing the principal and
magnetic quantum numbers that characterize it; the second
quantized operators a†

k+Q,c and ak,v create and annihilate an
electron of momentum k + Q in the conduction band and an
electron of momentum k in the valence band, respectively.
This state can be expressed in condensed form as |ν, Q〉 =
b†

Q,ν |GS〉, with b†
Q,ν the bosonic operator, defined as

b†
Q,ν = 1√

A

∑
k

φν (k)a†
k+Q,cak,v. (A2)

We note that the bosonic nature of the operator (A2) is
guaranteed only in an average over the ground state.

The electrons in the TMD monolayer are described by the
Hamiltonian H = H0 + V , where

H0 =
∑
λ,k

Eλ,kâ†
λ,kâλ,k, (A3)
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with λ = {c, v}, Eλ,k = Eα , and with the interaction term
given by

V = 1

2A

∑
k1,k2,p

∑
λ1λ2λ3λ4

V (p)Fλ1λ2λ3λ4 (k1, k2, p)

× â†
k1+p,λ1

â†
k2−p,λ2

âk2,λ3 âk1,λ4 , (A4)

and

Fλ1λ2λ3λ4 (k1, k2, p) = u†
k1+p,λ1

u†
k2−p,λ2

uk2,λ3 uk1,λ4 , (A5)

is a product of the spinors presented in Eqs. (2) and (3) from
the main text and is termed the form factor. It is important to
note that we do not specify the spin and valley indices of the
spinors, since the procedure is identical for any spin and valley
combination. The function V (p) is the Fourier transform of
the Rytova-Keldysh potential given in Eq. (5), and whose
expression is known analytically [28],

V (q) = e2

2ε0q(r0q + κ )
. (A6)

We now intend to show that if the state |ν, Q〉 is an eigenstate
of H , then φν (k) obeys the Bethe-Salpeter equation, which
when Fourier transformed to the real space becomes the
Wannier equation, under a set of simplifying assumptions.

As previously said, with the purpose of obtaining the
Bethe-Salpeter equation, we start assuming that the state (A1)
is an eigenstate of the Hamiltonian H . If this is true, then H
can be written as H = ∑

Q,ν EQ,νb†
Q,νbQ,ν , where EQ,ν are the

energy eigenvalues of the exciton. Afterwards, we evaluate the
commutator of H with b†

Q,ν using both the fermionic (when
dealing with the a and a† operators) and bosonic (when deal-
ing directly with the b and b† operators) representations. In
the end we demand that both results must be equal. Following
this procedure, one obtains the equation for the wave function
of the exciton in momentum space,

Eφν (k) = φν (k)(Ec,k − Ev,k ) + 1

A
φν (k)

∑
p

V (p)

× [u†
k,vu†

k−p,vuk,vuk−p,v − u†
k,cu†

k+p,vuk,cuk+p,v]

− 1

A

∑
p

V (p)φν (p + k)u†
p+k,vu†

k,cup+k,cuk,v,

(A7)

where E represents the exciton energy eigenvalues. This equa-
tion in momentum space for φν (k) is known as the Bethe-
Salpeter equation. Analyzing it, one realizes that each term
has a clear and distinct meaning. While the first term gives
the energy of a particle-hole excitation when no interactions
are treated, the second term represents the exchange energy
correction to the noninteracting particle-hole excitation en-
ergy; its value determines the magnitude of the gap. The third
and final term describes the attraction between the electron
and hole present in the conduction and in the valence band,
respectively. Crucially, this term is negative, although in the
original Hamiltonian the interaction between electrons is ob-
viously repulsive. To solve this equation directly in the mo-
mentum space, one would have to solve an integral equation,
that, although possible, can be a rather delicate process [8].

Another way of solving this problem passes by converting
this integral equation into a differential one, going to real
space by means of a Fourier transform. Unfortunately, another
complication arises, since the spinor product in the third term
of the Bethe-Salpeter equation makes Fourier transforming an
almost impossible task. In order to solve this problem, we
make the following observation concerning the form factors.
In the case of a large energy gap, one can take

u†
p+k,vu†

k,cup+k,cuk,v −→ 1 + O(1/m2) (A8)

so as to forego the spinorial structure of the last term of the
Bethe-Salpeter equation. Although the reader, recalling the
values of Table I, may find this approximation to be crude,
we actually found excellent agreement with the results from
Ref. [26] when the case of MoTe2 on a substrate of EuO was
studied. It is also considered that both the energy difference
Ec,k − Ev,k and the exchange energy corrections are expanded
up to second order in k. The resulting differential equation—
in real space—reads

(E − Eg)ψν (r) = −
[

h̄2

2μ
∇2 + V (r)

]
ψν (r), (A9)

which is known as the Wannier equation for the excitonic
wave function. In this context, μ is the reduced mass of
the exciton which, in our model, reads m∗/2, with m∗ the
effective mass of the electron/hole, and Eg is the corrected gap
considering the exchange correction. In this work, however,
for simplicity’s sake, we will discard the exchange correction,
and consider Eg as the gap given by Eq. (4) of the main text.
This decision allows us to better compare our results with the
ones from Ref. [26]. If the exchange correction to the gap was
considered, the separation between the valence and conduc-
tion bands would increase, the conductivities would appear at
higher energies, and their magnitude would be bigger.

In the above we have shown that in order to solve the
excitonic problem, one needs to first obtain the excitonic wave
function in both real and reciprocal space. Here, we show
that a quasianalytical expression for the wave functions of
the exciton can be written using a set of Gaussian functions,
which simplifies the calculations when compared to a fully
numerical method. Although other possibilities exist for the
choice of a basis, such as the Slater basis, the choice of a
Gaussian basis is the approach used in this work. Inspired by
the solution of the 2D hydrogen atom [39], we write our wave
function as

ψν (r) = Aν

N∑
j=1

cν
j e

imθ r|m|e−ζ j r2
, (A10)

where eimθ r|m| follows from the eigenfunctions of the z com-
ponent of the angular momentum and the behavior of the ra-
dial wave function near the origin, for m = 0,±1,±2, . . ., the
magnetic quantum number; the Gaussian term e−ζ j r2

describes
the decay of the wave function far from the origin, with a
decay constant dependent on ζ j . The coefficients cν

j weigh
the different terms; and Aν is a normalization constant given
by

Aν =
√

1

π Sν

, (A11)
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with Sν = ∑N
j=1

∑N
j′=1 cν∗

j cν
j′ (ζ j + ζ j′ )−1−|m|�(|m| + 1), and

�(x) the gamma function. An additional advantage of this
method is that the matrix elements of both the kinetic operator
and the electron-electron interaction do not mix different m
values and therefore the eigenvalue problem is block diagonal
in the angular momentum space.

Using our trial wave function and computing the ma-
trix elements of the kinetic and potential energy op-
erators, the generalized eigenvalue problem acquires the
form

N∑
j=1

[H (ζi, ζ j ) − S(ζi, ζ j )E ]cν
j = 0, (A12)

where H (ζi, ζ j ) is called the Hamiltonian kernel and S(ζi, ζ j )
is the superposition kernel. The latter differs from a
Kronecker-δ kernel, since the set of Gaussian functions is not
an orthogonal basis. Both kernels have an analytical expres-
sion given in Ref. [31]. Equation (A12) has first been written
in nuclear physics and is termed the Griffin-Hill-Wheeler
equation [40]. The key aspect of the method is the sensible
choice of the parameters ζ j . A choice not so well known is the
use of a logarithmic grid of ζ ’s according to the rule given in
Ref. [41], � = ln ζ

A , where A > 1 and the �’s are uniformly
spaced in an interval [�min,�max] and A is typically chosen
between 6 and 8. The exposed method was previously used in
Ref. [31], and was shown to produce excellent results.
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[4] I. Žutić, A. Matos-Abiague, B. Scharf, H. Dery, and K.

Belashchenko, Mater. Today 22, 85 (2019).
[5] Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, Phys. Rev.

Lett. 114, 016603 (2015).
[6] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[7] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T.

Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018).
[8] A. J. Chaves, R. M. Ribeiro, T. Frederico, and N. M. R. Peres,

2D Mater. 4, 025086 (2017).
[9] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.

Lett. 108, 196802 (2012).
[10] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A.

Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Phys. Rev.
Lett. 114, 037401 (2015).

[11] A. V. Stier, K. M. McCreary, B. T. Jonker, J. Kono, and S. A.
Crooker, Nat. Commun. 7, 10643 (2016).

[12] A. Arora, R. Schmidt, R. Schneider, M. R. Molas, I. Breslavetz,
M. Potemski, and R. Bratschitsch, Nano Lett. 16, 3624 (2016).

[13] C. Zhao, T. Norden, P. Zhang, P. Zhao, Y. Cheng, F. Sun,
J. P. Parry, P. Taheri, J. Wang, Y. Yang, T. Scrace, K. Kang,
S. Yang, G. xing Miao, R. Sabirianov, G. Kioseoglou, W.
Huang, A. Petrou, and H. Zeng, Nat. Nanotechnol. 12, 757
(2017).

[14] D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas,
B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A.
McGuire et al., Sci. Adv. 3, e1603113 (2017).

[15] K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson,
T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire
et al., Nano Lett. 18, 3823 (2018).

[16] J. Qi, X. Li, Q. Niu, and J. Feng, Phys. Rev. B 92, 121403
(2015).

[17] L. Xu, M. Yang, L. Shen, J. Zhou, T. Zhu, and Y. P. Feng, Phys.
Rev. B 97, 041405(R) (2018).

[18] N. Li, J. Zhang, Y. Xue, T. Zhou, and Z. Yang, Phys. Chem.
Chem. Phys. 20, 3805 (2018).

[19] Q. Zhang, S. A. Yang, W. Mi, Y. Cheng, and U.
Schwingenschlögl, Adv. Mater. 28, 959 (2016).

[20] K. Zollner, P. E. Faria Junior, and J. Fabian, Phys. Rev. B 100,
085128 (2019).

[21] K. Zollner, P. E. Faria Junior, and J. Fabian, arXiv:1910.13223.
[22] A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow,

R. F. Marks, R. Savoy, and J. C. Scott, Phys. Rev. B 50, 3419
(1994).

[23] W. Zeper, F. Greidanus, P. Carcia, and C. Fincher, J. Appl. Phys.
65, 4971 (1989).

[24] P. M. Oppeneer, T. Maurer, J. Sticht, and J. Kübler, Phys. Rev.
B 45, 10924 (1992).

[25] H. Da, L. Gao, W. Ding, and X. Yan, J. Phys. Chem. Lett. 8,
3805 (2017).

[26] B. Scharf, G. Xu, A. Matos-Abiague, and I. Žutić, Phys. Rev.
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