Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/86294
Información del item - Informació de l'item - Item information
Título: Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review
Autor/es: Jin, Wei | Pastor Pérez, Laura | Shen, DeKui | Sepúlveda-Escribano, Antonio | Gu, Sai | Ramírez Reina, Tomás
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Hydrodeoxygenation | Biomass model compounds | HDO catalyst | Reforming | Catalytic transfer hydrogenation | Metal hydrolysis | Non-thermal plasma
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 28-nov-2018
Editor: Wiley-VCH Verlag GmbH & Co. KGaA
Cita bibliográfica: ChemCatChem. 2019, 11(3): 924-960. doi:10.1002/cctc.201801722
Resumen: Catalytic hydrodeoxygenation (HDO) is a fundamental process for bio‐resources upgrading to produce transportation fuels or added value chemicals. The bottleneck of this technology to be implemented at commercial scale is its dependence on high pressure hydrogen, an expensive resource which utilization also poses safety concerns. In this scenario, the development of hydrogen‐free alternatives to facilitate oxygen removal in biomass derived compounds is a major challenge for catalysis science but at the same time it could revolutionize biomass processing technologies. In this review we have analysed several novel approaches, including catalytic transfer hydrogenation (CTH), combined reforming and hydrodeoxygenation, metal hydrolysis and subsequent hydrodeoxygenation along with non‐thermal plasma (NTP) to avoid the supply of external H2. The knowledge accumulated from traditional HDO sets the grounds for catalysts and processes development among the hydrogen alternatives. In this sense, mechanistic aspects for HDO and the proposed alternatives are carefully analysed in this work. Biomass model compounds are selected aiming to provide an in‐depth description of the different processes and stablish solid correlations catalysts composition‐catalytic performance which can be further extrapolated to more complex biomass feedstocks. Moreover, the current challenges and research trends of novel hydrodeoxygenation strategies are also presented aiming to spark inspiration among the broad community of scientists working towards a low carbon society where bio‐resources will play a major role.
Patrocinador/es: Financial support for this work was provided by the Department of Chemical and Process Engineering of the University of Surrey and the EPSRC grants EP/J020184/2 and EP/R512904/1 as well as the Royal Society Research Grant RSGR1180353. Authors would also like to acknowledge the Ministerio de Economía, Industriay Competitividad of Spain (Project MAT2013‐45008‐P) and the Chinese Scholarship Council (CSC). LPP also thanks Comunitat Valenciana for her postdoctoral fellow (APOSTD2017).
URI: http://hdl.handle.net/10045/86294
ISSN: 1867-3880 (Print) | 1867-3899 (Online)
DOI: 10.1002/cctc.201801722
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Revisión científica: si
Versión del editor: https://doi.org/10.1002/cctc.201801722
Aparece en las colecciones:INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Jin_etal_ChemCatChem.pdf7 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.