Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/81787
Información del item - Informació de l'item - Item information
Título: Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead
Autor/es: Olivier, Yoann | Sancho-Garcia, Juan-Carlos | Muccioli, Luca | D'Avino, Gabriele | Beljonne, David
Grupo/s de investigación o GITE: Química Cuántica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física
Palabras clave: Computational design | Thermally activated delayed fluorescence
Área/s de conocimiento: Química Física
Fecha de publicación: 28-sep-2018
Editor: American Chemical Society
Cita bibliográfica: The Journal of Physical Chemistry Letters. 2018, 9: 6149-6163. doi:10.1021/acs.jpclett.8b02327
Resumen: Thermally activated delayed fluorescence (TADF) offers promise for all-organic light-emitting diodes with quantum efficiencies competing with those of transition-metal-based phosphorescent devices. While computational efforts have so far largely focused on gas-phase calculations of singlet and triplet excitation energies, the design of TADF materials requires multiple methodological developments targeting among others a quantitative description of electronic excitation energetics, fully accounting for environmental electrostatics and molecular conformational effects, the accurate assessment of the quantum mechanical interactions that trigger the elementary electronic processes involved in TADF, and a robust picture for the dynamics of these fundamental processes. In this Perspective, we describe some recent progress along those lines and highlight the main challenges ahead for modeling, which we hope will be useful to the whole TADF community.
Patrocinador/es: The work in Mons was supported by the Belgian National Science Foundation, F.R.S.-FNRS. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by F.R.S.-FNRS under Grant No. 2.5020.11 as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under Grant Agreement n1117545. The research in Bologna, Grenoble, and Mons is also through the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 646176 (EXTMOS project).
URI: http://hdl.handle.net/10045/81787
ISSN: 1948-7185
DOI: 10.1021/acs.jpclett.8b02327
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2018 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acs.jpclett.8b02327
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - QC - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Olivier_etal_JPhysChemLett_final.pdfVersión final (acceso restringido)2,41 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2018_Olivier_etal_JPhysChemLett_accepted.pdfAccepted Manuscript (acceso abierto)1,44 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.