Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/22587
Información del item - Informació de l'item - Item information
Title: Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions
Authors: Gonçalves, Maraisa | Sánchez García, Laura | Jardim, Erika de Oliveira | Silvestre-Albero, Joaquín | Rodríguez Reinoso, Francisco
Research Group/s: Materiales Avanzados
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Activated carbons | Ammonia removal | Surface chemistry
Knowledge Area: Química Inorgánica
Issue Date: 3-Nov-2011
Publisher: American Chemical Society
Citation: GONÇALVES, Maraisa, et al. “Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions”. Environmental Science &Technology. Vol. 45, No. 24 (2011). ISSN 0013-936X, pp. 10605-10610
Abstract: The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH4+ species interacting with the Brønsted acid sites, together with the presence of NH3 species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.
Sponsor: Financial support from MEC(projectMAT2007- 61734 FEDER) and Generalitat Valenciana (PROMETEO/2009/002). The European Commission is also acknowledged (project FRESP CA, contract 218138). J.S.-A. acknowledges support from MEC, GV, and UA (RyC2137/06).
URI: http://hdl.handle.net/10045/22587
ISSN: 0013-936X (Print) | 1520-5851 (Online)
DOI: 10.1021/es203093v
Language: eng
Type: info:eu-repo/semantics/article
Rights: Copyright © 2011 American Chemical Society
Peer Review: si
Publisher version: http://dx.doi.org/10.1021/es203093v
Appears in Collections:Research funded by the EU
INV - LMA - Artículos de Revistas
INV - NANOMOL - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailGoncalves_Ammonia_Removal_Using_Activated_Carbons_ACS.pdfVersión revisada (acceso abierto)848,38 kBAdobe PDFOpen Preview
ThumbnailGoncalves_Ammonia_Removal_Using_Activated_Carbons_ACS_final.pdfVersión final (acceso restringido)1,21 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.