Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/22587
Información del item - Informació de l'item - Item information
Título: Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions
Autor/es: Gonçalves, Maraisa | Sánchez García, Laura | Jardim, Erika de Oliveira | Silvestre-Albero, Joaquín | Rodríguez Reinoso, Francisco
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Activated carbons | Ammonia removal | Surface chemistry
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 3-nov-2011
Editor: American Chemical Society
Cita bibliográfica: GONÇALVES, Maraisa, et al. “Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions”. Environmental Science &Technology. Vol. 45, No. 24 (2011). ISSN 0013-936X, pp. 10605-10610
Resumen: The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH4+ species interacting with the Brønsted acid sites, together with the presence of NH3 species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.
Patrocinador/es: Financial support from MEC(projectMAT2007- 61734 FEDER) and Generalitat Valenciana (PROMETEO/2009/002). The European Commission is also acknowledged (project FRESP CA, contract 218138). J.S.-A. acknowledges support from MEC, GV, and UA (RyC2137/06).
URI: http://hdl.handle.net/10045/22587
ISSN: 0013-936X (Print) | 1520-5851 (Online)
DOI: 10.1021/es203093v
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Copyright © 2011 American Chemical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1021/es203093v
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - LMA - Artículos de Revistas
INV - NANOMOL - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGoncalves_Ammonia_Removal_Using_Activated_Carbons_ACS.pdfVersión revisada (acceso abierto)848,38 kBAdobe PDFAbrir Vista previa
ThumbnailGoncalves_Ammonia_Removal_Using_Activated_Carbons_ACS_final.pdfVersión final (acceso restringido)1,21 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.