Evaluating the Robustness of Deep Learning Models against Adversarial Attacks: An Analysis with FGSM, PGD and CW

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/139780
Información del item - Informació de l'item - Item information
Título: Evaluating the Robustness of Deep Learning Models against Adversarial Attacks: An Analysis with FGSM, PGD and CW
Autor/es: Villegas-Ch, William | Jaramillo-Alcázar, Angel | Luján-Mora, Sergio
Grupo/s de investigación o GITE: Advanced deveLopment and empIrical research on Software (ALISoft)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Palabras clave: Adversary examples | Robustness of models | Countermeasures
Fecha de publicación: 16-ene-2024
Editor: MDPI
Cita bibliográfica: Villegas-Ch W, Jaramillo-Alcázar A, Luján-Mora S. Evaluating the Robustness of Deep Learning Models against Adversarial Attacks: An Analysis with FGSM, PGD and CW. Big Data and Cognitive Computing. 2024; 8(1):8. https://doi.org/10.3390/bdcc8010008
Resumen: This study evaluated the generation of adversarial examples and the subsequent robustness of an image classification model. The attacks were performed using the Fast Gradient Sign method, the Projected Gradient Descent method, and the Carlini and Wagner attack to perturb the original images and analyze their impact on the model’s classification accuracy. Additionally, image manipulation techniques were investigated as defensive measures against adversarial attacks. The results highlighted the model’s vulnerability to conflicting examples: the Fast Gradient Signed Method effectively altered the original classifications, while the Carlini and Wagner method proved less effective. Promising approaches such as noise reduction, image compression, and Gaussian blurring were presented as effective countermeasures. These findings underscore the importance of addressing the vulnerability of machine learning models and the need to develop robust defenses against adversarial examples. This article emphasizes the urgency of addressing the threat posed by harmful standards in machine learning models, highlighting the relevance of implementing effective countermeasures and image manipulation techniques to mitigate the effects of adversarial attacks. These efforts are crucial to safeguarding model integrity and trust in an environment marked by constantly evolving hostile threats. An average 25% decrease in accuracy was observed for the VGG16 model when exposed to the Fast Gradient Signed Method and Projected Gradient Descent attacks, and an even more significant 35% decrease with the Carlini and Wagner method.
URI: http://hdl.handle.net/10045/139780
ISSN: 2504-2289
DOI: 10.3390/bdcc8010008
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/bdcc8010008
Aparece en las colecciones:INV - ALISoft - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailVillegas-Ch_etal_2024_BigDataCognComput.pdf1,53 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.