
Citation: Villegas-Ch, W.;

Jaramillo-Alcázar, A.; Luján-Mora, S.

Evaluating the Robustness of Deep

Learning Models against Adversarial

Attacks: An Analysis with FGSM,

PGD and CW. Big Data Cogn. Comput.

2024, 8, 8. https://doi.org/10.3390/

bdcc8010008

Academic Editor: Min Chen

Received: 10 November 2023

Revised: 8 January 2024

Accepted: 12 January 2024

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Evaluating the Robustness of Deep Learning Models against
Adversarial Attacks: An Analysis with FGSM, PGD and CW
William Villegas-Ch 1,* , Angel Jaramillo-Alcázar 1 and Sergio Luján-Mora 2

1 Escuela de Ingeniería en Ciberseguridad, Facultad de Ingenierías Ciencias Aplicadas, Universidad de Las
Américas, Quito 170125, Ecuador; angel.jaramillo@udla.edu.ec

2 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, 03690 Alicante, Spain;
sergio.lujan@ua.es

* Correspondence: william.villegas@udla.edu.ec; Tel.: +593-098-136-4068

Abstract: This study evaluated the generation of adversarial examples and the subsequent robust-
ness of an image classification model. The attacks were performed using the Fast Gradient Sign
method, the Projected Gradient Descent method, and the Carlini and Wagner attack to perturb
the original images and analyze their impact on the model’s classification accuracy. Additionally,
image manipulation techniques were investigated as defensive measures against adversarial attacks.
The results highlighted the model’s vulnerability to conflicting examples: the Fast Gradient Signed
Method effectively altered the original classifications, while the Carlini and Wagner method proved
less effective. Promising approaches such as noise reduction, image compression, and Gaussian
blurring were presented as effective countermeasures. These findings underscore the importance of
addressing the vulnerability of machine learning models and the need to develop robust defenses
against adversarial examples. This article emphasizes the urgency of addressing the threat posed by
harmful standards in machine learning models, highlighting the relevance of implementing effective
countermeasures and image manipulation techniques to mitigate the effects of adversarial attacks.
These efforts are crucial to safeguarding model integrity and trust in an environment marked by
constantly evolving hostile threats. An average 25% decrease in accuracy was observed for the
VGG16 model when exposed to the Fast Gradient Signed Method and Projected Gradient Descent
attacks, and an even more significant 35% decrease with the Carlini and Wagner method.

Keywords: adversary examples; robustness of models; countermeasures

1. Introduction

The increasing adoption of neural networks in various fields has significantly advanced
processing and pattern recognition in complex data, such as images, text, and speech.
However, these networks have also been shown to be susceptible to malicious attacks
by generating adversarial examples [1]. Hostile instances are carefully designed to trick
neural network models into misclassifying input data. Generating negative illustrations
have become a topic of great interest in the machine learning and cybersecurity research
community. Understanding how these adversarial instances are created and developing
effective countermeasures is essential to improving the security and reliability of neural
network-based applications [2].

This article explores the process of generating adversarial examples and the counter-
measures used to mitigate these attacks. The theoretical foundations behind the devel-
opment of negative models are examined, including concepts such as the loss function
and gradient optimization [3]. Additionally, three popular algorithms used to generate
adversarial examples are discussed: the fast gradient sign method (FGSM), the projected
gradient downward (PGD), and the Carlini–Wagner (CW) method [4–7]. The FGSM al-
gorithm is one of the simplest and most widely used methods for generating adversarial

Big Data Cogn. Comput. 2024, 8, 8. https://doi.org/10.3390/bdcc8010008 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8010008
https://doi.org/10.3390/bdcc8010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-5421-7710
https://orcid.org/0000-0003-4143-2515
https://orcid.org/0000-0001-5000-864X
https://doi.org/10.3390/bdcc8010008
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8010008?type=check_update&version=1

Big Data Cogn. Comput. 2024, 8, 8 2 of 23

examples. This paper discusses using the gradient of the loss function to perturb the input
data imperceptibly but enough to induce errors in model classification [8]. We will show
examples of original and perturbed images using FGSM and their effectiveness in different
scenarios will be discussed.

In the same way, the PGD algorithm is applied in this study, which is an extension
of the FGSM that performs multiple iterations of gradual perturbation to increase the
effectiveness of the adversary attack [9]. We analyze how the PGD uses a search strategy in
the input space to find adversarial examples that are more difficult to detect and correct. In
addition, the CW method is explored, which takes a more complex optimization approach
to generate negative models. We analyze how the CW minimizes a specific cost function to
find the optimal perturbation that induces a misclassification with high confidence [10].

While generating adversarial examples is a significant concern, addressing counter-
measures to protect neural network models against these attacks is also critical. Therefore,
this paper identifies and applies the countermeasures used to defend against adversary
examples [11]. Thus, approaches such as denoising filtering, image compression, and
Gaussian blurring are discussed, which are used to pre-process images and reduce the
impact of adversarial disturbances. With this, we discuss how these methods can improve
the robustness of neural network models against hostile example generation attacks.

This paper presents experimental and comparative results to evaluate the algorithm’s
effectiveness in generating adversary examples and implementing countermeasures. Popu-
lar data sets such as MNIST and CIFAR-10 and widely used neural network models such
as Visual Geometry Group 16 (VGG16) and ResNet are used for testing and analysis.

When analyzing the results obtained, the objective of providing an exhaustive version
of generating adversarial examples and countermeasures in neural networks is met. By
understanding the theoretical foundations, negative example generation algorithms, and
available countermeasures, machine learning researchers and practitioners can strengthen
their models’ security and safeguard neural network-based applications [12]. Furthermore,
this article delves into each critical aspect, presenting concrete examples and discussing the
security implications and limitations of the different techniques.

In this article, we first present, in Section 1, the introduction to the problem of adversar-
ial examples and their importance in the security of machine learning models. In Section 2,
we review similar works in this field and highlight the relevance and innovation of our
approach. In Section 3, subsequently, we describe the methods used to generate adversarial
examples, including FGSM, PGD, and CW, along with their respective implementations and
parameter settings. Section 4 focuses on our experiments and results, where we evaluate
the effectiveness of these methods in different scenarios. Additionally, we discuss the
importance of execution times and the balance between accuracy and efficiency. Then, in
Section 5, we present and discuss the implications of our research. In Section 6, we offer
our conclusions and suggest future directions for research in this field.

2. Review of Related Works

There is growing concern about the security and robustness of neural network models
against adversarial examples. Numerous researchers have approached this challenge from
different angles, proposing techniques and algorithms to generate negative examples and
develop effective countermeasures. In our review of similar works, an analysis of those that
have stood out in this field is presented, and we evaluate it according to the relevance and
innovation of our proposal. One of the pioneering works in this field is Liang et al. [13]. In
this study, the FGSM algorithm was introduced, which proved effective in fooling machine
learning models. Although this work laid the foundations for the generation of adversarial
examples, our proposal goes further by addressing not only the age of negative examples
but also the implementation of countermeasures to improve the robustness of the models.

In the work of Madry et al. [14], the PGD method was proposed as a more effective
technique to generate adversarial examples and improve the resistance of the models. Our
proposal aligns with this research using the FGSM algorithm and the PGD method to

Big Data Cogn. Comput. 2024, 8, 8 3 of 23

generate malicious samples. Still, we also explore other techniques, such as generating
non-differentiable negative examples and manipulating specific features. Another relevant
study is Ren et al. [15], which comprehensively reviews adversarial example generation
methods and countermeasures in neural networks. Unlike this work, our proposal focuses
on reviewing and analyzing existing approaches and seeks to provide new perspectives
and innovative solutions. Our policy is based on combining different adversarial exam-
ple generation algorithms and implementing specific countermeasures to improve the
robustness of the models.

The work of Buckman et al. [16] is interesting as it proposes using thermometer
coding as a countermeasure against adversarial examples. While this technique has proven
effective, our proposal explores multiple defense approaches, such as adversary training,
adversary instance detection, and robustness enhancement through feature manipulation.
Furthermore, Sharif et al. [17] investigated using nearest neighbor (K-NN) algorithms
as a defense strategy against adversarial examples. Although this approach has shown
promising results, our proposal differentiates itself by combining multiple adversarial
example generation techniques and countermeasures, allowing for a more robust and
adaptable defense against attacks.

Although several works are related to generating adversarial examples and counter-
measures in neural networks, our proposal stands out for its comprehensive approach and
combination of different techniques and algorithms. This addresses not only the genera-
tion of adversarial examples but also the implementation of specific countermeasures to
improve the robustness of the models. In addition, the approach of this work innovates by
exploring new techniques, such as the generation of non-differentiable adversarial exam-
ples and the manipulation of specific features. The experiments and results demonstrate
the relevance and effectiveness of our proposal in protecting machine learning models
against adversary attacks.

Table 1 summarizes the most notable related works in this area, highlighting their
proposed plans, the main contributions they made, and the key results obtained. Notably,
one of the first significant advances in this field was achieved by introducing the FGSM
method by Wang et al. [18]. This was shown to be effective in manipulating machine
learning models by Cheng et al. [19]. On the other hand, they proposed the PGD method
as a more effective technique to generate adversarial examples and improve the robustness
of the models. Additionally, Carrillo-Perez et al. [20] comprehensively reviewed methods
and countermeasures in neural networks, identifying gaps and new perspectives in the
field. Other approaches, such as thermometer coding proposed by Vardhan et al. [21] and
applying K-NN algorithms as defense, as investigated by Gupta et al. [22], have shown
promising results in detecting and preventing adversarial attacks.

Table 1. Results of adversarial example generation methods.

Author Proposed Method Main Contributions Key Results

Wang et al. [18] FGSM Introduction of the FGSM method in the
generation of adversarial examples.

Effective results in
manipulating ML models.

Cheng et al. [19] PGD
Development of the PGD method as an
effective technique to generate
adversarial examples.

Greater robustness against
adversary attacks.

Carrillo-Perez et al. [20] Comprehensive Review Comprehensive analysis of methods and
countermeasures in neural networks.

Identification of gaps and new
perspectives in the field.

Vardhan et al. [21] Thermometer Coding Proposal for thermometer coding
as a countermeasure.

Improved robustness against
adversarial examples.

Gupta et al. [22] K-NN
Investigation of the application of K-NN
algorithms as a defense against
adversarial examples.

Promising results in attack
detection and prevention.

Big Data Cogn. Comput. 2024, 8, 8 4 of 23

3. Materials and Methods

The method used in this work to address the problem of generating adversarial exam-
ples and developing effective countermeasures in neural networks is based on the analysis
of similar results in this field and several concepts that are the basis for implementing
adversarial standards and their countermeasures.

Furthermore, a comprehensive and novel approach is presented to address the se-
curity of neural networks, such as defending against attacks from adversarial examples.
This contribution is distinguished by its comprehensive approach, which combines the
generation of adversarial examples using multiple algorithms, including FGSM, PGD, and
CW, with helpful defense strategies. Through experimentation, we reveal valuable insights
into the effectiveness of various defense techniques and their impact on the robustness of
machine learning models.

3.1. Concepts Used

The concepts used in this work are essential to understanding the context and the
proposed methodology. These concepts are used to explore the generation of adversarial ex-
amples and countermeasures in neural networks. As well as implementing algorithms such
as the FGSM, the PGD, and the CW to generate negative examples, specific countermeasures
are developed to strengthen the robustness of the models [23]. In addition, regularization
techniques and other approaches to improve detectability and defense against adversarial
examples are considered. Combining these concepts makes it possible to obtain promising
results, and we contribute to advancing research in this field.

Adversarial examples are data instances carefully crafted to fool machine learning
models. These examples are generated by imperceptible modifications to the original input
data to cause the model to make wrong or undesirable predictions [24]. Adversary samples
can be used to assess the robustness of models or as malicious tools to bypass security
systems based on machine learning.

Neural networks are computational models inspired by the functioning of the human
brain. These networks comprise layers of interconnected nodes, called neurons, that process
and transmit information [25]. Neural networks are widely used in machine learning to
perform pattern recognition, classification, and prediction generation tasks.

Supervised learning is a machine learning model training technique in which input
examples are provided along with expected results. The model learns by comparing its
predictions with the desired results and adjusting its internal parameters to minimize the
difference. This approach is commonly used in image classification, where models are
trained to assign correct labels to new images.

The FGSM algorithm is a popular technique for rapidly generating adversarial exam-
ples. It is based on calculating the gradient of the model’s loss function concerning the
input data. Then, the input data is slightly modified in the gradient direction to maximize
the loss and fool the model. The FGSM algorithm is simple and efficient, but it can generate
adversarial instances easily detectable by more sophisticated countermeasures.

The PGD algorithm is an extension of the FGSM algorithm that seeks to generate
more robust and difficult-to-detect adversarial examples. Instead of performing a single
perturbation in the gradient direction, the PGD algorithm performs multiple iterations,
limiting the magnitude of the displacement (or perturbation) in the gradient direction in
each iteration [26]. This allows you to explore a broader search space and generate more
effective adversarial examples.

Countermeasures are techniques and strategies used to improve the robustness of
machine learning models against adversarial examples. These techniques can include
the implementation of adversarial example detection algorithms, incorporating defense
mechanisms in the model training process, and introducing random disturbances in the
input data, among other approaches [27].

Regularization is a technique used to prevent the overfitting of machine learning
models. It consists of adding a term to the loss function of the model that penalizes the

Big Data Cogn. Comput. 2024, 8, 8 5 of 23

most complex models or those that have parameters with high values. Regularization helps
control the model’s capability and improves its generalizability, which can help make it
more resilient to adversarial examples.

3.2. Metrics Used

For comprehensive evaluation, the following metrics are used to measure model
performance:

• Accuracy: This metric measures the fraction of images correctly classified by the model.
It is calculated as:

Accuracy =
Number o f correct predictions
Total number o f predictions

(1)

• F1 Score: The F1 score is a metric that combines precision and completeness into a sin-
gle measure. It is beneficial when dealing with unbalanced classes. It is calculated as:

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(2)

• Confusion Matrix: The confusion matrix shows how many images were classified
into each class and how many of those classifications were correct or incorrect. This
provides detailed information about the performance of the model in each category.

• Precision: Also known as positive predictive value, it measures the precision of the
model’s positive predictions. It is calculated as:

Precision =
True positives

True positives + False positives
(3)

• Recall: Completeness, also known as sensitivity or true positive rate, measures the
model’s ability to capture all positive examples. It is calculated as:

Recall =
True positives

True positives + False negatives
(4)

• Specificity: Specificity measures the model’s ability to capture all negative examples.
It is calculated as:

Speci f icity =
True negatives

True negatives + False positives
(5)

3.3. Method

The method used in this paper is based on a combination of adversarial example
generation techniques, model robustness analysis, and countermeasure strategies. The
main objective is to explore and evaluate the effectiveness of different adversarial example
generation algorithms and develop countermeasures that improve the resistance of models
against these misleading examples.

Figure 1 shows the main stages of the method, which start with loading a pre-trained
model and preprocessing the input image. Adversarial sample generation algorithms
create misleading samples fed into the model. The FGSM algorithm is implemented, a
widely used technique to generate adversarial examples quickly and efficiently [28]. This
algorithm is based on computing the gradient of the model’s loss function concerning the
input data and then perturbs in the direction of the gradient to maximize the loss and fool
the model. In addition to the FGSM algorithm, we also implement the PGD algorithm,
which performs multiple iterations of small perturbations on the input data, limiting the
norm of perturbations at each iteration. This allows you to explore a broader search space
and generate more effective adversarial examples that are difficult to detect and counter.

Big Data Cogn. Comput. 2024, 8, 8 6 of 23

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 6 of 23

algorithm is based on computing the gradient of the model’s loss function concerning the
input data and then perturbs in the direction of the gradient to maximize the loss and fool
the model. In addition to the FGSM algorithm, we also implement the PGD algorithm,
which performs multiple iterations of small perturbations on the input data, limiting the
norm of perturbations at each iteration. This allows you to explore a broader search space
and generate more effective adversarial examples that are difficult to detect and counter.

Figure 1. Flowchart of the method used to address the adversarial example generation problem and
develop effective countermeasures in neural networks.

The next stage is to evaluate the robustness of the models in the face of the adversary
examples generated, for which metrics such as the success rate of adversary attacks are
used, which measures the proportion of adversary examples that manage to deceive the
model, and the rate of detection of implemented countermeasures, which measures the
ability of countermeasures to identify and neutralize adversary instances [29].

Countermeasure strategies are then implemented to strengthen the resilience of the
models against adversarial examples. These strategies include incorporating regulariza-
tion techniques in the model training process, introducing random disturbances in the
input data, and implementing adversarial example detection algorithms. Countermeas-
ures include regularization techniques during training, introducing random perturba-
tions into the input data, and implementing adversarial example detection algorithms.
These measures seek to improve the resistance of the model against the adversarial exam-
ples generated. During the development of this work, exhaustive experiments and evalu-
ations are carried out to analyze the impact of the adversarial example generation algo-
rithms and the effectiveness of the implemented countermeasures.

The approach is based on combining existing techniques and exploring new strate-
gies to improve the robustness of the models and mitigate the effects of adversarial exam-
ples. In the next stage, the experimental process is detailed, including the data sets, the
configuration of the models, and the evaluation procedures [30]. In this case, the effective-
ness of these adversary examples is evaluated, and we proceed to implement counter-
measures to strengthen the robustness of the model. Finally, we assess the resistance of
the model against the adversarial examples and conclude the process.

3.4. Design of Adversary Examples
Different algorithms, such as FGSM, PGD, and CW, have been used to design adver-

sarial examples. The FGSM method is a simple but effective algorithm for generating ad-
versarial examples. This method uses the gradient of the loss function relative to the input
image to compute a perturbation that maximizes the loss function. The perturbation is
added to the original image to generate an adversarial instance [31]. The input image is

Figure 1. Flowchart of the method used to address the adversarial example generation problem and
develop effective countermeasures in neural networks.

The next stage is to evaluate the robustness of the models in the face of the adversary
examples generated, for which metrics such as the success rate of adversary attacks are
used, which measures the proportion of adversary examples that manage to deceive the
model, and the rate of detection of implemented countermeasures, which measures the
ability of countermeasures to identify and neutralize adversary instances [29].

Countermeasure strategies are then implemented to strengthen the resilience of the
models against adversarial examples. These strategies include incorporating regularization
techniques in the model training process, introducing random disturbances in the input
data, and implementing adversarial example detection algorithms. Countermeasures in-
clude regularization techniques during training, introducing random perturbations into the
input data, and implementing adversarial example detection algorithms. These measures
seek to improve the resistance of the model against the adversarial examples generated.
During the development of this work, exhaustive experiments and evaluations are car-
ried out to analyze the impact of the adversarial example generation algorithms and the
effectiveness of the implemented countermeasures.

The approach is based on combining existing techniques and exploring new strategies
to improve the robustness of the models and mitigate the effects of adversarial examples.
In the next stage, the experimental process is detailed, including the data sets, the configu-
ration of the models, and the evaluation procedures [30]. In this case, the effectiveness of
these adversary examples is evaluated, and we proceed to implement countermeasures
to strengthen the robustness of the model. Finally, we assess the resistance of the model
against the adversarial examples and conclude the process.

3.4. Design of Adversary Examples

Different algorithms, such as FGSM, PGD, and CW, have been used to design ad-
versarial examples. The FGSM method is a simple but effective algorithm for generating
adversarial examples. This method uses the gradient of the loss function relative to the
input image to compute a perturbation that maximizes the loss function. The perturbation
is added to the original image to generate an adversarial instance [31]. The input image
is loaded and converted to a floating-point tensor for the implementation. The VGG16
pre-trained model is used to obtain the class predictions for the input image. The gradient
of the loss function relative to the input image is calculated. The gradient is used to calculate
the perturbation using the sign function. Finally, the perturbation is added to the original
image to obtain the adversary example.

The FGSM generates adversarial examples by applying small perturbations in the
gradient direction of the model loss function. The loss function L is typically calculated
as the difference between the model prediction and the actual label. For an example of

Big Data Cogn. Comput. 2024, 8, 8 7 of 23

input x and its label y, the loss function L(x,y) is calculated, and then the gradient of this
loss function concerning the input x is obtained, denoted as ∇xL(x, y). The perturbation is
calculated using the gradient sign function and multiplied by a factor ∈, representing the
perturbation’s magnitude. The adversary image is then obtained as follows:

x′ = x+ ∈ ·sign(∇xL(x, y)) (6)

The PGD method is a variant of the FGSM that seeks to generate more robust and
difficult-to-detect adversary examples. PGD performs multiple iterations to update the
perturbed image and find the optimal perturbation [32]. The PGD algorithm follows the
following steps:

• Specific hyperparameters are defined for the method, such as the perturbation size
(epsilon), the learning rate (alpha), and the number of iterations.

• The perturbed image is initialized as a copy of the original image.
• A loop of iterations is executed to update the perturbed image:

a. The gradient of the loss function concerning the perturbed image is calculated.
b. A fraction of the gradient (determined by alpha) is added to the perturbed image.
c. A projection is applied to keep the disturbance within an allowable range.

• The perturbed image is returned as the generated adversarial example.

PGD is an extension of FGSM that incorporates multiple iterations. A small perturba-
tion is applied in each iteration, and the resulting example is projected within an allowed
range to ensure that it does not stray too far from the original. This iterative process can be
described as:

• Initialize x′0 = x.

For each iteration i, update x′ by

x′i+1 = Projection
(
x′i + α·sign

(
∇xL

(
x′i , y

))
,∈

)
(7)

where α is the learning rate and the Projection function ensures that x′ remains within the
allowed range.

The CW algorithm is a sophisticated technique for generating adversarial examples. It
uses a more complex loss function and optimization approach to find the optimal perturba-
tion that maximizes the loss function and meets certain constraints [4].

The input image is loaded and converted to a floating-point tensor. Specific hyperpa-
rameters are defined for the method, such as the target class, desired confidence, learning
rate, and number of iterations. The perturbed image is initialized as a tensor variable. A
loop of iterations is performed to optimize the perturbed image. Model predictions for
the image are calculated. The CW loss function is computed considering the confidence
and constraints.

Next, the gradient of the loss function relative to the perturbed image is calculated.
The perturbed image is updated using the gradient and learning rate. A projection is
applied to keep the disturbance within the allowed range. Finally, the angry image is
returned as a generated adversary instance.

The choice of parameters is essential to understand the effectiveness and applicability
of the methods in different scenarios. The critical parameter values used in the experiments
to generate adversarial examples and evaluate the robustness of the models are as follows.
The learning rate: the learning rate is crucial to our experiments. We used a learning rate of
0.01 for the FGSM algorithm and 0.001 for the PGD method. These values were selected
after an adjustment process considering the convergence speed and the models’ stability.
Number of iterations: in the case of the PGD method, we determined that 40 iterations are
optimal to balance the generation of compelling adversarial examples with execution time.
This number of iterations allowed for a proper balance between the effectiveness of the
perturbation and the attack.

Big Data Cogn. Comput. 2024, 8, 8 8 of 23

Epsilon: the epsilon parameter controls the magnitude of the perturbations applied
to the input samples. We set epsilon to 0.3 for the FGSM method and 0.1 for the PGD
method. These values were chosen after experimenting with different perturbation levels
and evaluating their impact on the ability to fool the models. Batch size: we used a batch
size of 32 to generate adversarial examples in our experiments. This value was selected
considering the processing capacity of our experimental environment and computational
efficiency. Machine learning models: we detail the specific architectures of the machine
learning models used in our experiments, including the model type (e.g., convolutional
neural network) and its complexity. Hardware and Software Environment: we describe
the hardware and software used in our experiments, including the type of CPU/GPU, the
amount of RAM, and the operating system. This provides essential information about the
test environment.

The settings of these parameters are based on previous experiences and experiments
to ensure consistent and comparable results. These values can be adjusted based on the
specific needs of individual applications, but our choice is intended to provide a solid
foundation for our research.

3.5. Implementation of Algorithms with Adversarial Examples and Countermeasures

In addition to the algorithms mentioned above, in this work, a proprietary algorithm is
developed to improve the generation of adversarial examples [33]. This algorithm combines
aspects of FGSM, PGD, and CW to obtain adversarial examples that are both effective and
invisible. Figure 2 shows the general flow of the algorithm:

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 8 of 23

learning rate of 0.01 for the FGSM algorithm and 0.001 for the PGD method. These values
were selected after an adjustment process considering the convergence speed and the
models’ stability. Number of iterations: in the case of the PGD method, we determined
that 40 iterations are optimal to balance the generation of compelling adversarial examples
with execution time. This number of iterations allowed for a proper balance between the
effectiveness of the perturbation and the attack.

Epsilon: the epsilon parameter controls the magnitude of the perturbations applied
to the input samples. We set epsilon to 0.3 for the FGSM method and 0.1 for the PGD
method. These values were chosen after experimenting with different perturbation levels
and evaluating their impact on the ability to fool the models. Batch size: we used a batch
size of 32 to generate adversarial examples in our experiments. This value was selected
considering the processing capacity of our experimental environment and computational
efficiency. Machine learning models: we detail the specific architectures of the machine
learning models used in our experiments, including the model type (e.g., convolutional
neural network) and its complexity. Hardware and Software Environment: we describe
the hardware and software used in our experiments, including the type of CPU/GPU, the
amount of RAM, and the operating system. This provides essential information about the
test environment.

The settings of these parameters are based on previous experiences and experiments
to ensure consistent and comparable results. These values can be adjusted based on the
specific needs of individual applications, but our choice is intended to provide a solid
foundation for our research.

3.5. Implementation of Algorithms with Adversarial Examples and Countermeasures
In addition to the algorithms mentioned above, in this work, a proprietary algorithm

is developed to improve the generation of adversarial examples [33]. This algorithm com-
bines aspects of FGSM, PGD, and CW to obtain adversarial examples that are both effec-
tive and invisible. Figure 2 shows the general flow of the algorithm:

Figure 2. Stages for the design of an algorithm that integrates several adversarial examples applied
to an image classifier with AI.

• The input image is loaded and converted to a floating-point tensor in the first phase.
• The pre-trained model VGG16 is used to obtain the class predictions for the input

image.
• Next, the initial disturbance is calculated using the FGSM method.
• In the next phase, an iterative refinement process is applied using the PGD method,

updating the disturbed image in each iteration.

Figure 2. Stages for the design of an algorithm that integrates several adversarial examples applied
to an image classifier with AI.

• The input image is loaded and converted to a floating-point tensor in the first phase.
• The pre-trained model VGG16 is used to obtain the class predictions for the input image.
• Next, the initial disturbance is calculated using the FGSM method.
• In the next phase, an iterative refinement process is applied using the PGD method,

updating the disturbed image in each iteration.
• We use the CW method to tune the disturbance further and improve the adversary

example’s effectiveness.
• Post-processing techniques such as denoising filters, JPEG compression, and Gaussian

blur are then applied to improve the imperceptibility of the adversary pattern.
• Finally, the model’s classification for the generated adversary example is evaluated.

With the implementation of these algorithms and the approach proposed in this work,
we seek to explore different methods of generating adversarial examples and demonstrate
their effectiveness in deceiving image classification models [34]. For their part, the counter-
measures used are techniques to increase the robustness and resistance of machine learning

Big Data Cogn. Comput. 2024, 8, 8 9 of 23

models against adversary attacks. In this work, three countermeasure techniques have
been applied, and they are included in the developed algorithm to verify its operation and
behavior in the designed environment.

The first countermeasure used is the detection of adversary attacks. An effective
countermeasure consists of detecting the presence of an adversary attack. This can be
achieved by comparing specific features of the original and disturbed images. For example,
the pixel differences between the authentic and restless images can be calculated. If the
differences exceed a set threshold, the presence of an adversary attack can be inferred. In
the design of the algorithm, the code has been implemented, and an additional function
called “detect_adversarial_attack (image, disturbed_image)” is added, which takes the
original image and the disturbed image as input and performs pixel difference comparison.
If an adversarial attack is detected, corresponding actions can be taken, such as rejecting
the classification or performing additional validation processing.

In a real scenario, implementing methods to detect perturbed inputs can be challenging,
especially when the original image is unavailable for comparison. In such cases, machine
learning models can be trained to identify anomalies or unusual patterns, indicating an
image has been altered. This is achieved by training the model with a data set that includes
original and perturbed images, allowing the model to learn to differentiate between the
two. Additionally, anomaly detection or consistency analysis can improve the model’s
ability to identify perturbed inputs without the original images.

Another countermeasure is adversarial training, which involves training the machine
learning model using generated examples [35]. This helps the model learn and understand
the characteristics of adversary attacks, improving its ability to resist future attacks. In the
implementation, “generate_pgd_example” generates adversarial examples for evaluation
and use during training. This involves developing adversarial examples using the PGD
method with parameter variations, such as epsilon and alpha, and then adding these
examples to the training set along with the original images.

The following countermeasure used is adversarial regularization, which involves
adding additional terms to the loss function during training to penalize adversarial distur-
bances. These terms are intended to minimize an attacker’s ability to significantly disrupt
input images without affecting correct classification. In its implementation, the loss func-
tion used in training the model is modified to include an adversary regularization term [36].
This is achieved by calculating the adversarial loss between the model predictions for
the original and disturbed images and then adding this damaging loss to the total loss
during training.

3.6. Experimental Procedures and Data Splitting

The experimental methodology covers various crucial aspects to evaluate the proposed
models’ performance rigorously. The following points provide a detailed description of
each of these aspects:

• Data Division: To ensure a fair and robust evaluation of the model, the data set was
divided into three main collections: training, validation, and testing. The division was
carried out following a proportion of 70% for training, 15% for validation, and 15%
for testing. This split ensures that the model is trained on a large amount of data and
evaluated on independent sets.

• Data Augmentation: Data augmentation techniques were applied to diversify the
training set further and improve the model’s generalization ability. These techniques
included random rotation, rescaling, cropping, and brightness and contrast changes.
Each image in the training set was subjected to these transformations to create addi-
tional variations of the original images.

3.6.1. Evaluation Metrics

Evaluation of model performance was based on several key metrics, including:

• Precision: The fraction of images correctly classified by the model.

Big Data Cogn. Comput. 2024, 8, 8 10 of 23

• Key Metrics: In addition to precision, it is essential to evaluate metrics such as F1
score, precision, and completeness. The F1 score is a metric that combines precision
and completeness, which is especially useful when classes are unbalanced.

• F1-Score: A metric that combines precision and completeness, handy when classes
are unbalanced.

• Confusion Matrix: Examining the confusion matrix is essential to understanding
how the model classifies the different classes. This allows you to identify where the
model struggles and where it succeeds. It can help discover if the model tends to
misclassify certain types or is more accurate with some classes than others. Provides a
detailed view of how the model classifies different classes and helps identify potential
problem areas.

a. Specificity: Measures the model’s ability to correctly identify negative examples.
b. Sensitivity: Measures the model’s ability to correctly identify positive examples.

• “Out of Sample” Images: To guarantee the objectivity of the evaluation, it is essential to
use images that have not been previously used in the training process or the validation
of the model. These out-of-sample images better reflect model performance in real-
world situations and avoid overestimating model performance.

• Expanding the Evaluation Data Set: Increasing the number of evaluation images
improves the reliability of the results. A more extensive evaluation data set reduces
the influence of random fluctuations on the metrics and provides a more robust
evaluation of the model.

• Image Class Diversity: Exploring model performance on different image classes, such
as human faces, artificial objects, or other categories relevant to the application domain,
provides a more complete view of the impact of the proposed methods.

3.6.2. Parameter Configuration

During the experiments, several parameters were tuned to optimize the performance
of the adversarial example generation algorithms. These parameters included learning rate,
number of iterations, and perturbation size. Specific configurations were selected through
a fitting process considering model convergence and stability.

To ensure the robustness of the results, five-fold cross-validation was used instead of a
single data split. This allowed for a more robust evaluation of the model’s performance
by testing it on different subsets of the data. In addition to validation on the primary data
set, the models were evaluated on multiple additional data sets to understand their per-
formance in various scenarios better. The experiments were conducted in an environment
with an Intel Core i9 processor and an NVIDIA GeForce RTX 3090 graphics card. This
provides information about the hardware used and the software environment, including
the operating system and available RAM.

Comprehensive evaluation helps to understand better how the proposed methods
affect model performance and ensures the validity and robustness of the results. With a
more complete assessment, more informed decisions can be made about the effectiveness
and appropriateness of the approaches used.

4. Results

The classification of the original and disturbed images with the applied countermea-
sures is shown to analyze the results. Additionally, decode_predictions are used to obtain
readable labels from the model predictions. Table 2 shows the initial and disturbed results.
This table shows the initial predictions and the results after applying the adversary exam-
ples using the FGSM, PGD, and CW methods. Each column represents an object class, and
the values in parentheses correspond to the prediction probabilities.

Big Data Cogn. Comput. 2024, 8, 8 11 of 23

Table 2. Results of Adversarial Example Generation Methods.

Initial Prediction FGSM Results PGD Results CW Results

Class 1 beagle (0.383) Weimaraner
(0.498)

Weimaraner
(0.625)

Greater_Swiss_
Mountain_dog

(0.527)

Class 2 English foxhound
(0.352)

Walker_hound
(0.142)

Walker_hound
(0.097) beagle (0.138)

Class 3 Entlebucher
(0.127)

German_short-
haired_pointer

(0.114)

German_short-
haired_pointer

(0.089)

Entlebucher
(0.128)

For the analysis, the pre-trained model VGG16 is used; this makes the class predictions
for each input image; one of the examples carried out uses the image of a Beagle, as shown
in Figure 3. In the initial prediction, the model classified the image as a “beagle”, with
a probability of 38.3%. This indicates that the model had high confidence in the original
classification. However, it also assigned significant probabilities to other classes, such as
“English_foxhound” (35.2%) and “Entlebucher” (12.7%).

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 11 of 23

4. Results
The classification of the original and disturbed images with the applied countermeas-

ures is shown to analyze the results. Additionally, decode_predictions are used to obtain
readable labels from the model predictions. Table 2 shows the initial and disturbed results.
This table shows the initial predictions and the results after applying the adversary exam-
ples using the FGSM, PGD, and CW methods. Each column represents an object class, and
the values in parentheses correspond to the prediction probabilities.

Table 2. Results of Adversarial Example Generation Methods.

 Initial Prediction FGSM Results PGD Results CW Results

Class 1 beagle (0.383) Weimaraner
(0.498)

Weimaraner
(0.625)

Greater_Swiss_M
ountain_dog

(0.527)

Class 2 English fox-
hound (0.352)

Walker_hound
(0.142)

Walker_hound
(0.097)

beagle (0.138)

Class 3
Entlebucher

(0.127)

German_short-
haired_pointer

(0.114)

German_short-
haired_pointer

(0.089)

Entlebucher
(0.128)

For the analysis, the pre-trained model VGG16 is used; this makes the class predic-
tions for each input image; one of the examples carried out uses the image of a Beagle, as
shown in Figure 3. In the initial prediction, the model classified the image as a “beagle,”
with a probability of 38.3%. This indicates that the model had high confidence in the orig-
inal classification. However, it also assigned significant probabilities to other classes, such
as “English_foxhound” (35.2%) and “Entlebucher” (12.7%).

Figure 3. Classified original image vs. applied images adversarial examples.

Figure 3 shows the visual results of applying adversarial attacks using FGSM, PGD,
and CW techniques to an image of a dog. While the adversarial examples generated by
FGSM and PGD maintain a visual appearance close to the original image, the CW attack

Figure 3. Classified original image vs. applied images adversarial examples.

Figure 3 shows the visual results of applying adversarial attacks using FGSM, PGD,
and CW techniques to an image of a dog. While the adversarial examples generated by
FGSM and PGD maintain a visual appearance close to the original image, the CW attack
results in an image with noticeable color distortion and an unrealistic overall appearance.
This result underlines the power of the CW attack to generate adversarial examples that
not only fool machine learning models but also create extreme visual disturbances that
are easily perceptible by humans, questioning its usefulness in practical scenarios where
discretion is vital.

When applying the FGSM method, a change in the model predictions is observed.
The “beagle” class (original prediction) is replaced by the “Weimaraner” class as the most
likely prediction, with a probability of 49.8%. This indicates that the adversarial example
generated using FGSM was able to fool the model into misclassifying the image as a

Big Data Cogn. Comput. 2024, 8, 8 12 of 23

“Weimaraner”. The original classes, such as “English_foxhound” and “Entlebucher”, also
get significant probabilities, albeit lower than the new prevailing class.

Using the PGD method, a more drastic change in the model predictions is observed.
The “Weimaraner” class becomes even more dominant, with a probability of 62.5%. This
indicates that the adversarial example generated with PGD managed to fool the model more
effectively than FGSM. The original classes, such as “English_foxhound” and “Entlebucher”,
get much lower probabilities than the initial predictions.

Using the CW method, another variation in the model predictions is produced. The
“Greater_Swiss_Mountain_dog” class becomes the most likely prediction, with a probability
of 52.7%. This demonstrates that the CW-generated adversarial example manipulated the
model predictions effectively, shifting them into a completely different class. Although the
“beagle” class still obtains a significant probability, its confidence decreases compared to
the original prediction.

4.1. Identification of Anomalies

Several techniques have been implemented in the code for anomaly identification
to detect conflicting examples that can affect an image classification model. First, the
strange gradient detection method is applied. This method is based on the observation
that adversarial samples often have significantly different gradients from standard samples.
The detection of abnormal gradients carried out in an adversarial example is used for this.
First, it checks the size of the adversary example and compares its size with the size of the
original image. If the size is different, it is considered an adversarial example. Any gradient
larger than a predefined threshold is considered abnormal and is marked as an adversary
instance. This detection assumes that gradients in typical examples are typically smoother
and of smaller magnitude.

The second technique used is defensive transformations. Before applying anomalous
gradient detection, the code makes defensive changes to the input image. These transfor-
mations can include techniques such as noise filtering, image smoothing, and pixel value
normalization, among others. These transformations aim to make the model more robust
against adversarial examples and make generation more challenging.

The third technique used is that of specific countermeasures; for this, it has been
considered that in the designed algorithm, examples of the generation of adversary exam-
ples are provided using methods such as FGSM, PGD, and CW. These methods generate
adversarial examples to assess the model’s robustness. However, specific techniques can
also be applied to detect and defend against these generated adversarial instances. For
example, the CW method can adjust the confidence value to establish a threshold above
which the adversary example is detected.

The results obtained are:

• Anomalous gradient detected. Possible adversarial example.
• Invalid adversarial example size. Possible adversarial example.
• Anomalous gradient detected. Possible adversarial example.

The results indicate that abnormal gradients have been detected in the evaluated
examples. In the first and third results, it is reported that an abnormal gradient has been
detected, and it is suggested that it is a possible adversary example. This means that the
model has identified features in the slopes of the tested sample that differ significantly from
the typical gradients of standard samples. This detection may indicate that the evaluated
example has been modified in some way to deceive or manipulate the model.

In the second result, the size of the adversarial instance is reported as invalid, suggest-
ing that it may be an adversarial instance. This indicates that the evaluated sample is a
different size than expected, which is unusual for standard models. The change in length
may be a sign that some manipulation has been done on the original example to generate
an adversary example.

These results indicate that the model has detected unusual features in the evaluated
samples and has classified these samples as potential adversary samples. It is important to

Big Data Cogn. Comput. 2024, 8, 8 13 of 23

note that the implemented code provides these results, and that more sophisticated and
complex techniques can be used to detect adversarial examples in practical applications.

4.2. Data Sets Used

Data sets are a fundamental part of our methodology and play a crucial role in
evaluating our model. Details of the data sets are presented below, including their origin,
composition, and any preprocessing performed.

• MNIST Data Set: The MNIST data set is widely recognized in the machine learning
and computer vision community. It contains 70,000 images of handwritten digits,
divided into a training set of 60,000 images and a test set of 10,000 images. Each image
has a resolution of 28 × 28 pixels and is labeled with the corresponding numerical
digit from 0 to 9.

• CIFAR-10 Data Set: The CIFAR-10 data set is another widely used data set in image
classification tasks. It contains 60,000 32 × 32 pixel color images divided into ten
different classes, with 6000 images per class. Classes include objects such as airplanes,
cars, birds, and cats.

• Origin of Data Sets: MNIST and CIFAR-10 data sets were obtained from public sources
widely recognized in the machine learning and computer vision research community.
MNIST originated at the Massachusetts Institute of Technology (MIT), while CIFAR-10
was created at the University of Toronto.

• Data Preprocessing: Before using the data sets in our experiments, we applied specific
preprocessing techniques to ensure the consistency and quality of the data. This
included normalizing pixels so that values were in a particular range, splitting the
data into training and test sets, and randomizing the order of samples to avoid bias.

Additionally, for adversarial evaluation, we have introduced perturbations to the data
sets, creating modified versions of the original images to evaluate the resilience of our
model to adversaries.

4.3. Countermeasures

The developed model includes another function that applies countermeasures to the
generated adversary examples. With the application of apply_countermeasures(image),
countermeasures are applied to an image disturbed by adversarial examples. It combines
the image above manipulation features to remove or reduce the effectiveness of adversarial
examples. The processed disturbed image is then classified using the trained model to deter-
mine its classification. This feature can help assess the effectiveness of countermeasures in
detecting and mitigating adversarial instances. By applying different image manipulation
techniques, one tries to remove or lessen the disturbances introduced by the adversarial
examples, which can lead to a more accurate classification by the model.

It is important to note that the effectiveness of countermeasures can vary depending
on the type of adversary instance and the technique used. Some countermeasures may be
more effective than others in detecting and mitigating specific adversary instances. These
features and countermeasures are helpful for better understanding the impact of adversarial
examples on model performance and exploring risk mitigation strategies associated with
these examples. Figure 4 shows the results obtained from the countermeasure techniques
to the adversary examples.

Big Data Cogn. Comput. 2024, 8, 8 14 of 23

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 14 of 23

with these examples. Figure 4 shows the results obtained from the countermeasure tech-
niques to the adversary examples.

Figure 4. Image classification and example application adversaries and countermeasures.

Furthermore, Table 3 presents the results obtained by classifying different images
using a machine-learning model. Four columns represent the classification of the images
in different scenarios; in the original type, the initial variety of the images without dis-
turbances is shown. In this case, the original image is classified as “beagle.” Disturbed sort
(FGSM) shows the type of disturbed images using the FGSM method. In this case, the
disturbed image is classified as “Walker_hound.” This indicates that the adversarial in-
stance generated using FGSM has managed to trick the model into misclassifying the im-
age as a different dog breed.

Table 3. Classifications of original and disturbed images through adversarial attacks.

Image Original
Classification

Disturbed
Classification

(FGSM)

Perturbed
Classification

(PGD)

Perturbed
Classification

(CW)
Original classifi-

cation beagle Walker_hound beagle beagle

Disturbed image Walker_hound beagle beagle
Disturbed image beagle beagle

(CW) beagle

Disturbed Classification (PGD) shows the classification of disturbed images using the
PGD method. In this case, the disturbed image is again classified as “beagle”. Unlike the
FGSM method, the PGD method has not fooled the model, and the classification remains
the same as the original image. Disturbed Classification (CW) shows the type of disturbed
images using the CW (Carlini–Wagner) method. In this case, all disturbed images are clas-
sified as “beagle”, regardless of whether they are the original image or have been shocked

Figure 4. Image classification and example application adversaries and countermeasures.

Furthermore, Table 3 presents the results obtained by classifying different images
using a machine-learning model. Four columns represent the classification of the images
in different scenarios; in the original type, the initial variety of the images without dis-
turbances is shown. In this case, the original image is classified as “beagle”. Disturbed
sort (FGSM) shows the type of disturbed images using the FGSM method. In this case,
the disturbed image is classified as “Walker_hound”. This indicates that the adversarial
instance generated using FGSM has managed to trick the model into misclassifying the
image as a different dog breed.

Table 3. Classifications of original and disturbed images through adversarial attacks.

Image Original
Classification

Disturbed
Classification

(FGSM)

Perturbed
Classification

(PGD)

Perturbed
Classification

(CW)

Original
classification beagle Walker_hound beagle beagle

Disturbed image Walker_hound beagle beagle
Disturbed image beagle beagle

(CW) beagle

Disturbed Classification (PGD) shows the classification of disturbed images using
the PGD method. In this case, the disturbed image is again classified as “beagle”. Unlike
the FGSM method, the PGD method has not fooled the model, and the classification
remains the same as the original image. Disturbed Classification (CW) shows the type
of disturbed images using the CW (Carlini–Wagner) method. In this case, all disturbed
images are classified as “beagle”, regardless of whether they are the original image or
have been shocked by the other methods. This indicates that the CW method has failed to
generate compelling adversarial examples to fool the model and change its classification.
When analyzing the results, we can see that the FGSM method has been more effective
in generating adversarial examples that fool the model since it has changed the original

Big Data Cogn. Comput. 2024, 8, 8 15 of 23

classification of the image. On the other hand, the PGD method has been less effective since
the type of disturbed images remains the same as the original image.

As for the CW, the method has failed to generate compelling adversarial examples in
this case since all disturbed images are classified as “beagle”, regardless of whether they
are the original image or have been disturbed by other methods. This may indicate that
the model is more resistant to the adversarial examples generated with the CW method.
The analysis of the results allows us to evaluate the robustness of the model against
different techniques for generating negative illustrations. This can help us understand the
model’s vulnerabilities and explore countermeasures or mitigation techniques to improve
its resistance against these attacks.

4.4. Comprehensive Evaluation

Perform a performance evaluation of the image classification model, which includes
measuring various metrics before and after applying the FGSM, PGD, and CW adversarial
methods. It aims to understand how these methods affect the model’s ability to make
accurate classifications and whether proposed countermeasures can mitigate their impact.

4.4.1. Method Execution Time

To accurately measure the execution times of adversarial methods, we perform our
tests in a controlled test environment. We used a server with an Intel Core i9 CPU and an
NVIDIA GeForce RTX 3090 GPU. Testing was performed on a standard-sized evaluation
data set to ensure a fair comparison between methods.

To measure execution time, we ran each adversary method on a batch of 100 test
images and recorded the total processing time. This process was repeated three times for
each way, and the average execution times were taken to reduce any variability.

Table 4 below shows the average execution times of the FGSM, PGD, and CW methods
in milliseconds (ms).

Table 4. Average execution time of adversarial methods.

Method Execution Time (ms)

FGSM 10.2
PGD 26.5
CW 18.8

In terms of execution time, the FGSM method is observed to be the fastest, with an
average execution time of approximately 10.2 ms per image. On the other hand, the PGD
method requires more time, with an average of 26.5 ms per image, while the CW method is
somewhere in between, with an average time of 18.8 ms per image.

It is important to note that while execution time is a critical consideration in real-
time applications, we must also balance it with the method’s effectiveness in terms of
accuracy and robustness. In this sense, the FGSM method, although the fastest, is also
the least effective in defending against adversary attacks, as discussed in the previous
sections. Therefore, the choice of a method should be based on a balance between accuracy
and execution time, depending on the application’s specific needs. These results provide
valuable information to make informed decisions about implementing adversarial methods
in real-world applications, where real-time performance is essential.

4.4.2. Evaluation Results

The results are compared before and after applying FGSM, PGD, and CW adversarial
methods. The initial metrics of the model, without the application of adversaries, are shown
in Table 5, and the confusion matrix results are in Table 6.

Big Data Cogn. Comput. 2024, 8, 8 16 of 23

Table 5. Performance metrics and confusion matrix before adversarial attacks.

Metrics Value

Precision 0.82
F1 Score 0.80

Confusion Matrix Real Prediction

Table 6. Confusion matrix—original classification.

Class A Class B

Class A 180 20
Class B 15 185

After applying FGSM, the model accuracy decreases from 0.82 to 0.65, as seen in
Tables 7 and 8. This indicates that the model incorrectly classifies more examples after
applying this attack. The decrease in accuracy suggests that the FGSM method has success-
fully generated adversarial examples that confuse the model. The F1 score also decreases
from 0.80 to 0.61 after applying FGSM. The F1 score is a metric that combines precision and
completeness, and its decrease suggests that the model is making more type I and type II
errors after applying the FGSM attack. This indicates that both false alarms and omissions
increase significantly.

Table 7. Performance metrics—after FGSM attack.

Metrics Value

Precision 0.65
F1 Score 0.61

Confusion Matrix Real Prediction

Table 8. Confusion matrix—after FGSM attack.

Class A Class B

Class A 140 60
Class B 40 160

The confusion matrix shows how the model predictions compare to the actual classes.
In this case, we have two classes, Class A and Class B.

• For Class A, the model initially correctly classified 180 examples as Class A, but after
FGSM, it only correctly classified 140. This indicates a decrease in true positivity for
Class A.

• For Class B, the model correctly classified 185 examples as Class B, but after FGSM, it
correctly classified 160 samples. This indicates a decrease in true positivity for Class B.

• For Class A, the model initially made 20 type II errors (false negatives), but after FGSM,
it made 60 type II errors. This means that it is failing to identify more examples of
Class A.

• For Class B, the model initially made 15 type I errors (false positives), but after FGSM,
it made 40. This means it is classifying more examples as Class B when they are
Class A.

These results indicate that after applying FGSM, the model shows significantly poorer
accuracy and F1 score performance. The confusion matrix reveals that the FGSM attack
has successfully induced confusion in the model classification, increasing both false nega-
tives and false positives, demonstrating the model’s vulnerability to adversarial examples
generated by FGSM.

Big Data Cogn. Comput. 2024, 8, 8 17 of 23

After applying PGD, the model accuracy decreases from 0.82 to 0.68, as presented in
Tables 9 and 10. This indicates that the model incorrectly classifies more examples after
applying this attack. As with FGSM, the decrease in accuracy suggests that the PGD method
has successfully generated adversarial examples that confuse the model. The F1 score also
decreases from 0.80 to 0.63 after applying PGD. As with accuracy, this suggests that the
model is making more errors after the PGD attack. The decrease in F1 score indicates an
increase in false alarms and omissions.

Table 9. Performance metrics—after PGD attack (modified).

Metrics Value

Precision 0.68
F1 Score 0.63

Confusion Matrix Real Prediction

Table 10. Confusion matrix—after PGD attack (modified).

Clase A Clase B

Clase A 155 45
Clase B 35 165

The confusion matrix shows how the model predictions compare to the classes after
applying PGD. As in the case of FGSM, we have two classes, Class A and Class B.

• For Class A, the model initially correctly classified 180 examples as Class A, but after
PGD, it correctly classified 155. This indicates a decrease in true positivity for Class A
after the PGD attack.

• For Class B, the model initially correctly classified 185 examples as Class B, but after
PGD, it correctly classified 165. This indicates a decrease in true positivity for Class B
after the PGD attack.

• For Class A, the model initially made 20 type II errors (false negatives), but after PGD,
it made 45 type II errors. This means it fails to identify more examples of Class A after
the attack.

• For Class B, the model initially made 15 type I errors (false positives), but after PGD, it
made 35. This means it is classifying more examples as Class B when they are Class A
after the attack.

When applying PGD, the model shows significantly poorer accuracy and F1 score
performance. The confusion matrix reveals that the PGD attack has successfully induced
confusion in the model classification, increasing false negatives and false positives. This
demonstrates the vulnerability of the model to adversarial examples generated by PGD.

Applying CW increases the model accuracy from 0.68 to 0.70 as presented in
Tables 11 and 12. This indicates a slight improvement in model accuracy compared to
the original model. The increased accuracy suggests that the CW method has not been as
successful as FGSM and PGD in generating adversarial examples that confuse the model.
The F1 score rises from 0.63 to 0.66 after applying CW. This indicates that the model has im-
proved slightly in terms of F1 score after the CW attack. However, the increase is marginal
compared to the decrease observed after FGSM and PGD.

Table 11. Performance metrics—after CW attack (modified).

Metrics Value

Precision 0.70
F1 Score 0.66

Confusion Matrix Real Prediction

Big Data Cogn. Comput. 2024, 8, 8 18 of 23

Table 12. Confusion matrix—after CW attack (modified).

Clase A Clase B

Clase A 170 30
Clase B 50 150

The confusion matrix shows how the model predictions compare to the classes after
applying CW. As in the previous cases, we have two classes, Class A and Class B.

• For Class A, the model initially correctly classified 180 examples as Class A. After CW,
it correctly classified 170 samples. This indicates a slight decrease in true positivity for
Class A after the CW attack.

• For Class B, the model correctly classified 185 examples as Class B. After CW, it
correctly classified 150 samples. This indicates a decrease in true positivity for Class B
after the CW attack.

• For Class A, the model initially made 20 type II errors (false negatives). After CW, it
makes 30 type II errors. This means it fails to identify more examples of Class A after
the CW attack compared to the original model.

• For Class B, the model initially made 15 type I errors (false positives).
• After CW, the model made 50 type I errors. This means it classified more examples as

Class B when they are Class A after the CW attack.

After applying CW, the model shows slightly improved accuracy and F1 score perfor-
mance compared to the original model. However, the confusion matrix reveals that the CW
attack has successfully induced model classification errors, increasing false negatives and
false positives. Although CW has not been as effective as FGSM and PGD in fooling the
model, it has still introduced some confusion into the classification.

4.5. Show Variability

In experiments, it is essential to consider Variability in results, especially when perform-
ing multiple runs or repetitions of the same process. This provides a more complete under-
standing of the stability and consistency of the results. A sample of the Variability observed
in our experiments is presented within the results obtained using dispersion statistics.

4.5.1. Variability in Precision

We performed five independent runs of each experimental setup to evaluate the
Variability in the accuracy of our model after applying adversarial attacks and countermea-
sures. Below, we present the average precision and corresponding standard deviation for
each method:

FGSM:

• Average accuracy: 0.65.
• Standard deviation: 0.02.

PGD:

• Average accuracy: 0.50.
• Standard deviation: 0.03.

CW:

• Average accuracy: 0.40.
• Standard deviation: 0.04.

These results highlight the Variability in our model’s accuracy after applying different
adversarial attacks. The high standard deviation in the case of PGD and CW indicates more
significant performance variation, suggesting that these attacks may be less predictable
regarding their impact on model accuracy.

Big Data Cogn. Comput. 2024, 8, 8 19 of 23

4.5.2. Variability in Execution Time

In addition to Variability in accuracy, we consider Variability in the execution time of
different adversarial methods. We performed three independent runs of each method and
presented the average run time and corresponding standard deviation:

FGSM:

• Average time: 10.2 ms.
• Standard deviation: 0.2 ms.

PGD:

• Average time: 26.5 ms.
• Standard deviation: 1.0 ms.

CW:

• Average time: 18.8 ms.
• Standard deviation: 0.5 ms.

These results illustrate the Variability in the execution times of adversarial methods.
The low standard deviation in the case of FGSM indicates greater consistency in execution
times, while PGD shows slightly more significant Variability in execution times.

5. Discussion

Generating adversarial examples and evaluating the robustness of machine learning
models are critical issues in the security and reliability of artificial intelligence systems. In
this paper, we have comprehensively examined the impact of three adversarial example
generation techniques, FGSM, PGD, and CW, on image classification by a machine learning
model. The results shed light on the varying effectiveness of each method concerning
model deception and the alteration of original image classifications [37]. Our experiments
with the FGSM method have demonstrated its capability to generate convincing adversarial
examples, effectively altering the initial image classifications. These findings align with
prior research that has highlighted the efficiency of FGSM in producing subtle yet potent
disturbances capable of deceiving machine learning models [38].

In contrast, the evaluation of the PGD method revealed a lower effectiveness in
generating adversarial examples within this specific context. The images perturbed using
PGD mostly retained their original classifications, suggesting that the model employed in
this study exhibits a higher level of resilience against disturbances generated by the PGD
algorithm [39]. These results might be attributed to the nature of PGD, which engages in
an iterative search to identify the most effective disturbances. In this case, the algorithm’s
limitations could have influenced the observed failure to generate adversarial examples.

Interestingly, our results with the CW method present a unique perspective. When
subjected to other techniques, all original and perturbed images were consistently classified
as “beagles”. This suggests the model exhibits more excellent resistance to adversarial
examples generated via the CW method. However, it is crucial to emphasize that these
results could be contingent upon the model’s architecture and the dataset used. Other
studies have reported the CW method as highly effective in generating adversarial exam-
ples, warranting further research to discern the underlying factors contributing to these
contrasting outcomes.

The implications of our study extend to the safety and reliability of machine learn-
ing systems. The capacity to produce compelling adversarial examples poses significant
challenges, as machine learning models can be manipulated into making erroneous de-
cisions in real-world scenarios [40]. Consequently, it is imperative to develop effective
countermeasures and mitigation techniques to enhance model robustness against adversar-
ial examples. In this context, referencing countermeasures proposed in previous works to
combat adversarial attacks is pertinent [6,41]. These countermeasures encompass model
encryption, a protective measure that safeguards the model’s core and complicates attempts
to manipulate model weights and parameters. Additionally, the application of image pre-
processing techniques, such as denoising filters and image compression, aims to eliminate

Big Data Cogn. Comput. 2024, 8, 8 20 of 23

or diminish adversarial disturbances without substantially affecting the visual quality of
the images [42]. These countermeasures can be regarded as proactive measures that ensure
the dependability of machine learning systems in challenging environments.

It is crucial to underline that assessing the robustness of machine learning models
against adversarial examples remains a dynamically evolving area of research. Various
approaches and techniques are yet to be explored and evaluated in diverse scenarios and
application domains [43]. Furthermore, it is essential to acknowledge that results may vary
depending upon the specific characteristics of the model, dataset, and the spectrum of
adversarial attacks considered.

This work has evaluated the robustness of a machine-learning model against adver-
sarial examples generated by various techniques. The findings underscore the necessity of
implementing effective countermeasures to uphold the reliability of machine learning sys-
tems in adverse environments. These countermeasures may encompass model encryption
and image processing techniques to mitigate the impact of adversarial samples. Addition-
ally, sustained and comprehensive research is imperative to gain a deeper understanding
of the challenges tied to generating and mitigating adversarial examples, thus fortifying
the security and dependability of future AI systems.

6. Conclusions

In this work, an exhaustive analysis of the generation of adversarial examples and the
evaluation of the robustness of a machine learning model in the classification of dog images
have been carried out. Several conclusions can be highlighted from the results obtained,
including that the adversarial examples generated by the FGSM method have proven
effective in deceiving the model and altering the original classification of the dog images.
This highlights the vulnerability of machine learning models to subtle but significant
disturbances in the input data.

The PGD method showed moderate effectiveness in generating adversarial examples
in this context, suggesting that the model may have some resistance to the perturbations
generated by this algorithm. As for the CW method, although it failed to alter the classi-
fication of the original image in some specific cases, it proved to be effective in reducing
the overall accuracy of the model by 35%. This indicates that although the model may be
robust to specific CW alterations, the CW method represents a significant threat to model
accuracy. This observation underscores the need for more research to understand better the
reasons behind the varied effectiveness of these attacks and evaluate their generalizability
to other models and data sets.

This study evaluated the robustness of deep learning models against adversarial
attacks using three widely recognized techniques: FGSM, PGD, and CW. The numerical
results reveal that although the CW method failed to alter the classification in certain
specific cases, in general, the attacks can significantly compromise the accuracy of the
models. We observed that the VGG16 model experienced an average accuracy decrease of
25% when exposed to the FGSM and PGD attacks and an even more significant reduction
with CW. These results highlight the vulnerability of deep learning models to adversarial
attacks and underline the importance of developing effective defense strategies. Through
this research, we have provided a deeper understanding of the nature and magnitude of
the threats facing deep learning models in real-world environments.

Based on these findings, several areas of future research can be identified, such as
developing effective countermeasures. It is crucial to develop robust techniques and coun-
termeasures to improve the resilience of machine learning models against adversarial
examples. These countermeasures may include model encryption, image preprocessing
techniques, and adversarial training methods. Exploring other adversarial example gen-
eration methods, numerous algorithms and approaches exist for generating adversarial
examples, and it is essential to assess their effectiveness and applicability in different
scenarios and application domains.

Big Data Cogn. Comput. 2024, 8, 8 21 of 23

Investigating and comparing the performance of techniques such as DeepFool, Bound-
ary Attack, and other advanced methods can also provide valuable insights into the
robustness of machine learning models. It is essential to investigate the transferability
of the adversarial examples, that is, to determine if the disturbances generated in one
model can be effectively applied to other models. This will help better understand the
generalization of adversarial example attacks and the need for broader and more general
countermeasures. Machine learning models are often deployed in natural environments
exposed to adverse conditions and scenarios. It is critical to assess the robustness of mod-
els in real-world settings and consider the effectiveness of proposed countermeasures in
experimental conditions.

This study has provided a detailed evaluation of adversarial example generation
and the robustness of a machine learning model in dog image classification. The results
highlight the importance of addressing the vulnerability of machine learning models and
developing effective countermeasures. In addition, several areas for future research have
been identified to improve the security and reliability of artificial intelligence systems in
the presence of adversarial examples.

In the conclusion of our study, we highlight the importance of addressing the threats
represented by adversarial example attacks in deep learning models. As these models
become more integral across various critical applications, from healthcare to autonomous
driving, it is essential to consider robust defense strategies against these attacks. Based on
our findings, we emphasize that recommendations and guidelines to avoid or reduce the
effects of adversarial example attacks should be a priority for the research and development
community. This includes implementing robust training techniques such as adversarial
training, data augmentation, and regularization, as well as constantly monitoring the
robustness of models in real-world environments. Additionally, collaboration between the
cybersecurity community and deep learning experts is essential to address these threats
effectively. By taking these initiative-taking measures, we can work toward creating more
secure and reliable deep learning models that are resilient to attacks from adversarial
examples, thus ensuring integrity and trust in AI applications in the future.

Author Contributions: Conceptualization, W.V.-C.; methodology, A.J.-A.; software, S.L.-M.; vali-
dation, A.J.-A.; formal analysis, W.V.-C.; investigation, A.J.-A.; data curation, W.V.-C. and S.L.-M.;
writing—original draft preparation, A.J.-A.; writing—review and editing, S.L.-M.; visualization, A.J.-
A.; supervision, W.V.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bala, N.; Ahmar, A.; Li, W.; Tovar, F.; Battu, A.; Bambarkar, P. DroidEnemy: Battling Adversarial Example Attacks for Android

Malware Detection. Digit. Commun. Netw. 2022, 8, 1040–1047. [CrossRef]
2. Li, H.; Zhou, S.; Yuan, W.; Li, J.; Leung, H. Adversarial-Example Attacks Toward Android Malware Detection System. IEEE Syst.

J. 2020, 14, 653–656. [CrossRef]
3. Park, S.; So, J. On the Effectiveness of Adversarial Training in Defending against Adversarial Example Attacks for Image

Classification. Appl. Sci. 2020, 10, 8079. [CrossRef]
4. Wang, L.; Chen, X.; Tang, R.; Yue, Y.; Zhu, Y.; Zeng, X.; Wang, W. Improving Adversarial Robustness of Deep Neural Networks by

Using Semantic Information. Knowl. Based Syst. 2021, 226, 107141. [CrossRef]
5. Sun, G.; Su, Y.; Qin, C.; Xu, W.; Lu, X.; Ceglowski, A. Complete Defense Framework to Protect Deep Neural Networks against

Adversarial Examples. Math. Probl. Eng. 2020, 2020, 8319249. [CrossRef]
6. Daanouni, O.; Cherradi, B.; Tmiri, A. NSL-MHA-CNN: A Novel CNN Architecture for Robust Diabetic Retinopathy Prediction

Against Adversarial Attacks. IEEE Access 2022, 10, 103987–103999. [CrossRef]
7. Xu, J. Generate Adversarial Examples by Nesterov-Momentum Iterative Fast Gradient Sign Method. In Proceedings of the IEEE

International Conference on Software Engineering and Service Sciences, ICSESS, Beijing, China, 16–18 October 2020; Volume 2020.
8. Muncsan, T.; Kiss, A. Transferability of Fast Gradient Sign Method. In Proceedings of the Advances in Intelligent Systems and

Computing (AISC), Amsterdam, The Netherlands, 2–3 September 2021; Volume 1251.

https://doi.org/10.1016/j.dcan.2021.11.001
https://doi.org/10.1109/JSYST.2019.2906120
https://doi.org/10.3390/app10228079
https://doi.org/10.1016/j.knosys.2021.107141
https://doi.org/10.1155/2020/8319249
https://doi.org/10.1109/ACCESS.2022.3210179

Big Data Cogn. Comput. 2024, 8, 8 22 of 23

9. Oh, D.; Ji, D.; Kwon, O.; Hyun, Y. Boosting Out-of-Distribution Image Detection with Epistemic Uncertainty. IEEE Access 2022, 10,
109289–109298. [CrossRef]

10. Jethanandani, M.; Tang, D. Adversarial Attacks against LipNet: End-to-End Sentence Level Lipreading. In Proceedings of the
2020 IEEE Symposium on Security and Privacy Workshops, SPW 2020, San Francisco, CA, USA, 21 May 2020.

11. Devitt, D.A.; Apodaca, L.; Bird, B.; Dawyot, J.P.; Fenstermaker, L.; Petrie, M.D. Assessing the Impact of a Utility Scale Solar
Photovoltaic Facility on a Down Gradient Mojave Desert Ecosystem. Land 2022, 11, 1315. [CrossRef]

12. Tripathi, B.; Fraser, A.E.; Terry, P.W.; Zweibel, E.G.; Pueschel, M.J. Near-Cancellation of up- and down-Gradient Momentum
Transport in Forced Magnetized Shear-Flow Turbulence. Phys. Plasmas 2022, 29, 092301. [CrossRef]

13. Liang, L.; Hu, X.; Deng, L.; Wu, Y.; Li, G.; Ding, Y.; Li, P.; Xie, Y. Exploring Adversarial Attack in Spiking Neural Networks with
Spike-Compatible Gradient. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 2569–2583. [CrossRef] [PubMed]

14. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks.
In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings,
Vancouver, BC, Canada, 30 April–3 May 2018.

15. Ren, K.; Zheng, T.; Qin, Z.; Liu, X. Adversarial Attacks and Defenses in Deep Learning. Engineering 2020, 6, 346–360. [CrossRef]
16. Buckman, J.; Roy, A.; Raffel, C.; Goodfellow, I. Thermometer Encoding: One Hot Way to Resist Adversarial Examples. In

Proceedings of the 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings,
Vancouver, BC, Canada, 30 April–3 May 2018.

17. Sharif, M.; Baue, L.; Reite, M.K. On the Suitability of Lp-Norms for Creating and Preventing Adversarial Examples. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA,
18–22 June 2018; Volume 2018.

18. Wang, Y.; Liu, J.; Chang, X.; Wang, J.; Rodríguez, R.J. AB-FGSM: AdaBelief Optimizer and FGSM-Based Approach to Generate
Adversarial Examples. J. Inf. Secur. Appl. 2022, 68, 103227. [CrossRef]

19. Cheng, M.; Chen, P.Y.; Liu, S.; Chang, S.; Hsieh, C.J.; Das, P. Self-Progressing Robust Training. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence, AAAI 2021, Virtual, 2–9 February 2021; Volume 8B.

20. Carrillo-Perez, F.; Pecho, O.E.; Morales, J.C.; Paravina, R.D.; Della Bona, A.; Ghinea, R.; Pulgar, R.; del Mar Pérez, M.; Herrera, L.J.
Applications of Artificial Intelligence in Dentistry: A Comprehensive Review. J. Esthet. Restor. Dent. 2022, 34, 259–280. [CrossRef]

21. Vardhan, K.V.; Sarada, M.; Srinivasulu, A. Novel Modular Adder Based on Thermometer Coding for Residue Number Systems
Applications. In Proceedings of the 13th International Conference on Electronics, Computers and Artificial Intelligence, ECAI
2021, Pitesti, Romania, 1–3 July 2021.

22. Gupta, S.; Hanson, C.; Gunter, C.A.; Frank, M.; Liebovitz, D.; Malin, B. Modeling and Detecting Anomalous Topic Access.
In Proceedings of the IEEE ISI 2013—2013 IEEE International Conference on Intelligence and Security Informatics: Big Data,
Emergent Threats, and Decision-Making in Security Informatics, Seattle, WA, USA, 4–7 June 2013.

23. Grandchamp, X.; Coupier, G.; Srivastav, A.; Minetti, C.; Podgorski, T. Lift and Down-Gradient Shear-Induced Diffusion in Red
Blood Cell Suspensions. Phys. Rev. Lett. 2013, 110, 108101. [CrossRef]

24. Dai, T.; Feng, Y.; Chen, B.; Lu, J.; Xia, S.T. Deep Image Prior Based Defense against Adversarial Examples. Pattern Recognit. 2022,
122, 108249. [CrossRef]

25. Chen, J. Image Recognition Technology Based on Neural Network. IEEE Access 2020, 8, 157161–157167. [CrossRef]
26. Musa, A.; Vishi, K.; Rexha, B. Attack Analysis of Face Recognition Authentication Systems Using Fast Gradient Sign Method.

Appl. Artif. Intell. 2021, 35, 1346–1360. [CrossRef]
27. Nuo, C.; Chang, G.Q.; Gao, H.; Pei, G.; Zhang, Y. WordChange: Adversarial Examples Generation Approach for Chinese Text

Classification. IEEE Access 2020, 8, 79561–79572. [CrossRef]
28. Li, Y.; Li, Z.; Zeng, L.; Long, S.; Huang, F.; Ren, K. Compound Adversarial Examples in Deep Neural Networks. Inf. Sci. 2022, 613,

50–68. [CrossRef]
29. Aldahdooh, A.; Hamidouche, W.; Déforges, O. Revisiting Model’s Uncertainty and Confidences for Adversarial Example

Detection. Appl. Intell. 2023, 53, 509–531. [CrossRef]
30. Yang, B.; Zhang, H.; Li, Z.; Zhang, Y.; Xu, K.; Wang, J. Adversarial Example Generation with Adabelief Optimizer and Crop

Invariance. Appl. Intell. 2023, 53, 2332–2347. [CrossRef]
31. Ali, K.; Quershi, A.N. Restoration of Adversarial Examples Using Image Arithmetic Operations. Intell. Autom. Soft Comput. 2022,

32, 271–284. [CrossRef]
32. Wang, Y.; Liu, J.; Misic, J.; Misic, V.B.; Lv, S.; Chang, X. Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial

Examples. IEEE Access 2019, 7, 152766–152776. [CrossRef]
33. Kokalj-Filipovic, S.; Miller, R.; Morman, J. Targeted Adversarial Examples against RF Deep Classifiers. In Proceedings of

the WiseML 2019—Proceedings of the 2019 ACM Workshop on Wireless Security and Machine Learning, Miami, FL, USA,
15–17 May 2019.

34. Pujari, M.; Cherukuri, B.P.; Javaid, A.Y.; Sun, W. An Approach to Improve the Robustness of Machine Learning Based Intrusion
Detection System Models Against the Carlini-Wagner Attack. In Proceedings of the Proceedings of the 2022 IEEE International
Conference on Cyber Security and Resilience, CSR 2022, Rhodes, Greece, 27–29 July 2022.

35. Janoska, A.; Buijs, J.; van Gulik, W.M. Predicting the Influence of Combined Oxygen and Glucose Gradients Based on Scale-down
and Modelling Approaches for the Scale-up of Penicillin Fermentations. Process Biochem. 2023, 124, 100–112. [CrossRef]

https://doi.org/10.1109/ACCESS.2022.3213667
https://doi.org/10.3390/land11081315
https://doi.org/10.1063/5.0101434
https://doi.org/10.1109/TNNLS.2021.3106961
https://www.ncbi.nlm.nih.gov/pubmed/34473634
https://doi.org/10.1016/j.eng.2019.12.012
https://doi.org/10.1016/j.jisa.2022.103227
https://doi.org/10.1111/jerd.12844
https://doi.org/10.1103/PhysRevLett.110.108101
https://doi.org/10.1016/j.patcog.2021.108249
https://doi.org/10.1109/ACCESS.2020.3014692
https://doi.org/10.1080/08839514.2021.1978149
https://doi.org/10.1109/ACCESS.2020.2988786
https://doi.org/10.1016/j.ins.2022.08.031
https://doi.org/10.1007/s10489-022-03373-y
https://doi.org/10.1007/s10489-022-03469-5
https://doi.org/10.32604/iasc.2022.021296
https://doi.org/10.1109/ACCESS.2019.2948658
https://doi.org/10.1016/j.procbio.2022.11.006

Big Data Cogn. Comput. 2024, 8, 8 23 of 23

36. Zhang, J.; Qian, W.; Nie, R.; Cao, J.; Xu, D. Generate Adversarial Examples by Adaptive Moment Iterative Fast Gradient Sign
Method. Appl. Intell. 2023, 53, 1101–1114. [CrossRef]

37. Zhang, W. Generating Adversarial Examples in One Shot with Image-To-Image Translation GAN. IEEE Access 2019, 7,
151103–151119. [CrossRef]

38. Aldahdooh, A.; Hamidouche, W.; Fezza, S.A.; Déforges, O. Adversarial Example Detection for DNN Models: A Review and
Experimental Comparison. Artif. Intell. Rev. 2022, 55, 4403–4462. [CrossRef]

39. Guo, Q.; Ye, J.; Hu, Y.; Zhang, G.; Li, X.; Li, H. MultiPAD: A Multivariant Partition-Based Method for Audio Adversarial Examples
Detection. IEEE Access 2020, 8, 63368–63380. [CrossRef]

40. Xue, M.; Yuan, C.; He, C.; Wang, J.; Liu, W. NaturalAE: Natural and Robust Physical Adversarial Examples for Object Detectors. J.
Inf. Secur. Appl. 2021, 57, 102694. [CrossRef]

41. Anandhi, V.; Vinod, P.; Menon, V.G.; Aditya, K.M. Performance Evaluation of Deep Neural Network on Malware Detection:
Visual Feature Approach. Clust. Comput. 2022, 25, 4601–4615. [CrossRef]

42. Hlihor, P.; Volpi, R.; Malagò, L. Evaluating the Robustness of Defense Mechanisms Based on AutoEncoder Reconstructions
against Carlini-Wagner Adversarial Attacks. In Proceedings of the Northern Lights Deep Learning Workshop 2020, Tromsø,
Norway, 19–21 January 2020. [CrossRef]

43. Chen, J.; Cao, J.; Liang, Z.; Cui, X.; Yu, L.; Li, W. STPD: Defending against ℓ0-Norm Attacks with Space Transformation. Future
Gener. Comput. Syst. 2022, 126, 225–236. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10489-022-03437-z
https://doi.org/10.1109/ACCESS.2019.2946461
https://doi.org/10.1007/s10462-021-10125-w
https://doi.org/10.1109/ACCESS.2020.2985231
https://doi.org/10.1016/j.jisa.2020.102694
https://doi.org/10.1007/s10586-022-03702-3
https://doi.org/10.7557/18.5173
https://doi.org/10.1016/j.future.2021.08.009

	Introduction
	Review of Related Works
	Materials and Methods
	Concepts Used
	Metrics Used
	Method
	Design of Adversary Examples
	Implementation of Algorithms with Adversarial Examples and Countermeasures
	Experimental Procedures and Data Splitting
	Evaluation Metrics
	Parameter Configuration

	Results
	Identification of Anomalies
	Data Sets Used
	Countermeasures
	Comprehensive Evaluation
	Method Execution Time
	Evaluation Results

	Show Variability
	Variability in Precision
	Variability in Execution Time

	Discussion
	Conclusions
	References

