Study of the influence of nanoscale porosity on the microbial electroactivity between expanded graphite electrodes and Geobacter sulfurreducens biofilms

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/139502
Información del item - Informació de l'item - Item information
Título: Study of the influence of nanoscale porosity on the microbial electroactivity between expanded graphite electrodes and Geobacter sulfurreducens biofilms
Autor/es: Ramirez-Moreno, Marina | Berenguer Betrián, Raúl | Ortiz, Juan M. | Esteve-Núñez, Abraham
Grupo/s de investigación o GITE: Electrocatálisis y Electroquímica de Polímeros
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Nanoscale porosity | Microbial electroactivity | Expanded graphite electrodes | Geobacter sulfurreducens biofilms
Fecha de publicación: 27-dic-2023
Editor: John Wiley & Sons
Cita bibliográfica: Microbial Biotechnology. 2024, 17(1): e14357. https://doi.org/10.1111/1751-7915.14357
Resumen: Expanded graphite (EG) electrodes gather several advantages for their utilization in microbial electrochemical technologies (MET). Unfortunately, the low microbial electroactivity makes them non-practical for implementing them as electrodes. The objective of this work is to explore the enhancement of microbial electroactivity of expanded graphite (commercial PV15) through the generation of nanopores by CO2 treatment. The changes in properties were thoroughly analysed by TG, XRD, Raman, XPS, gas adsorption, SEM and AFM, as well as microbial electroactivity in the presence of Geobacter sulfurreducens. Nanopores remarkably enhance the microbially derived electrical current (60-fold increase). Given the inaccessibility of micron-sized bacteria to these nanopores, it is suggested that the electric charge exchanged by electroactive microorganisms might be greatly affected by the capability of the electrode to compensate these charges through ion adsorption. The increased microbial current density produced on activated PV15 opens the possibility of using such materials as promising electrodes in MET.
Patrocinador/es: The authors thank the MINECO and FEDER (RYC-2017-23618 and CTM2015-74695-JIN) for financial support. Marina Ramirez and Juan M. Ortiz acknowledge Project ‘MIDES – H2020’, funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 685793. Juan M. Ortiz acknowledges Ministerio de Economía y Competitividad for the financial support (CTM2015-74695-JIN).
URI: http://hdl.handle.net/10045/139502
ISSN: 1751-7915
DOI: 10.1111/1751-7915.14357
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Authors. Microbial Biotechnology published by Applied Microbiology International and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Revisión científica: si
Versión del editor: https://doi.org/10.1111/1751-7915.14357
Aparece en las colecciones:INV - GEPE - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailRamirez-Moreno_etal_2024_MicrobialBiotechnology.pdf3,29 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.