Computational Design of Multiple Resonance-Type BN Molecules for Inverted Singlet and Triplet Excited States

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/139170
Información del item - Informació de l'item - Item information
Título: Computational Design of Multiple Resonance-Type BN Molecules for Inverted Singlet and Triplet Excited States
Autor/es: Pu, Yong-Jin | Valverde, Danillo | Sancho-Garcia, Juan-Carlos | Olivier, Yoann
Grupo/s de investigación o GITE: Química Cuántica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física
Palabras clave: Computational design | Multiple resonance-type | BN molecules | Inverted singlet-triplet excited states
Fecha de publicación: 27-nov-2023
Editor: American Chemical Society
Cita bibliográfica: The Journal of Physical Chemistry A. 2023, 127(48): 10189-10196. https://doi.org/10.1021/acs.jpca.3c06573
Resumen: A computational design of linearly extended multiple resonance (MR)-type BN molecules based on DABNA-1 is proposed herein in the quest to find potential candidates that exhibit a negative singlet–triplet gap (ΔEST) and a large oscillator strength value. The impact of a proper account of the electron correlation in the lowest singlet and triplet excited states is systematically investigated by using double-hybrid functionals within the TD-DFT framework, as well as wavefunction-based methods (EOM-CCSD and SCS-CC2), since this contribution plays an essential role in driving the magnitude of the ΔEST in MR-TADF and inverted singlet–triplet gap compounds. Our results point out a gradual reduction of the ΔEST gap with respect to the increasing sum of the number of B and N atoms, reaching negative ΔEST values for some molecules as a function of their size. The double-hybrid functionals reproduce the gap with only slight deviation compared to available experimental data for DABNA-1, ν-DABNA, and mDBCz and nicely agree with high-level quantum mechanical methods (e.g., EOM-CCSD and SCS-CC2). Larger oscillator strengths are found compared to the azaphenalene-type molecules, also exhibiting the inversion of their singlet and triplet excited states. We hope this study can serve as a motivation for further design of the molecules showing negative ΔEST based on boron- and nitrogen-doped polyaromatic hydrocarbons.
Patrocinador/es: J.C.S.G. acknowledges financial support from the “Ministerio de Ciencia e Innovación’’ of Spain (project PID2019-106114GB-I00). D.V. and Y.O. acknowledge funding by the “Fonds de la Recherche Scientifique-FNRS” under grant no. F.4534.21 (MIS-IMAGINE). The work in Namur has been funded by the Belgian National Fund for Scientific Research (F.R.S.-FNRS) within the Consortium des Équipements de Calcul Intensif (CÉCI) under grant no. 2.5020.11. The present research benefited from computational resources made available on the HOKUSAI Big Waterfall System at RIKEN and Lucia, the Tier-1 supercomputer of the Walloon Region, infrastructure funded by the Walloon Region under the grant agreement no. 1910247.
URI: http://hdl.handle.net/10045/139170
ISSN: 1089-5639 (Print) | 1520-5215 (Online)
DOI: 10.1021/acs.jpca.3c06573
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acs.jpca.3c06573
Aparece en las colecciones:INV - QC - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailPu_etal_2023_JPhysChemA_final.pdfVersión final (acceso restringido)1,69 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailPu_etal_2023_JPhysChemA_preprint.pdfPreprint (acceso abierto)1,26 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.