Promotion of Direct Electron Transfer to Cytochrome c by Functionalized Thiophene-based Conducting Polymers

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138541
Información del item - Informació de l'item - Item information
Título: Promotion of Direct Electron Transfer to Cytochrome c by Functionalized Thiophene-based Conducting Polymers
Autor/es: Sáenz-Espinar, María J. | Quintero-Jaime, Andrés Felipe | Gamero-Quijano, Alonso | Montilla, Francisco | Huerta Arráez, Francisco
Grupo/s de investigación o GITE: Electrocatálisis y Electroquímica de Polímeros
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Conducting polymer | Cytochrome c | Direct electrochemistry | Flipping | PEDOT | Redox protein
Fecha de publicación: 13-nov-2023
Editor: Wiley-VCH GmbH
Cita bibliográfica: ChemElectroChem. 2024, 11(2): e202300429. https://doi.org/10.1002/celc.202300429
Resumen: Controlling direct electron transfer (DET) to redox proteins is of great interest for fundamental studies on biochemical processes and the development of biotechnological devices, such as biosensors or enzymatic fuel cells. Cytochrome c is a classical model protein for studying DET reactions that plays a key role in the onset of cellular apoptosis and the mitochondrial respiratory chain. In this contribution, we explored DET between cyt c and conducting polymers bearing the chemical structure of thiophene, specifically PEDOT, and its OH-containing derivative, PHMeEDOT. The combination of electrochemistry and in situ FTIR spectroscopy allowed us to gain more insight into the inner mechanism of DET at physiological pH. Hydrophilic interactions favour the correct orientation of the heme crevice of cytochrome c towards the polymer surface. When a positive charge is injected into the conducting polymer, the increasing electrostatic repulsion between protein and surface induces the desorption of lysine residues near the heme group and stimulates protein flipping. This effect was more pronounced at PEDOT- than PHMeEDOT-modified electrodes since the latter shows stronger interactions with lysine residues, partially hindering protein rotation at moderate potential. The potential-induced reorientation process was similar on both polymer surfaces, only at high positive potentials.
Patrocinador/es: Financial support by Spanish Ministry of Science (projects TED2021-129894B-I00 and PDC2021-120884-I00), Generalitat Valenciana (projects GVA-THINKINAZUL/2021/015, MFA/2022/058 and CIPROM/2021/62) and European Union (NextGenerationEU PRTR-C17.I1) is gratefully acknowledged. A.G.-Q. acknowledges funding received from his Marie Skłodowska-Curie Postdoctoral Fellowship (Grant Number MSCA-IF-EF-ST 2020/101018277).
URI: http://hdl.handle.net/10045/138541
ISSN: 2196-0216
DOI: 10.1002/celc.202300429
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Authors. ChemElectroChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Revisión científica: si
Versión del editor: https://doi.org/10.1002/celc.202300429
Aparece en las colecciones:INV - GEPE - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailSaenz-Espinar_etal_2024_ChemElectroChem.pdf4,39 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.