Monolithic Zirconium-Based Metal–Organic Frameworks for Energy-Efficient Water Adsorption Applications

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/133853
Información del item - Informació de l'item - Item information
Título: Monolithic Zirconium-Based Metal–Organic Frameworks for Energy-Efficient Water Adsorption Applications
Autor/es: Çamur, Ceren | Babu, Robin | Suárez del Pino, Jose A. | Rampal, Nakul | Pérez Carvajal, Javier | Hügenell, Philipp | Ernst, Sebastian-Johannes | Silvestre-Albero, Joaquín | Imaz, Inhar | Madden, David G. | Maspoch, Daniel | Fairen-Jimenez, David
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica
Palabras clave: Coefficient of performance, heating, ventilation, and air conditioning | Metal–organic frameworks | Renewable cooling | Water adsorption
Fecha de publicación: 15-mar-2023
Editor: Wiley-VCH GmbH
Cita bibliográfica: Advanced Materials. 2023, 35(23): 2209104. https://doi.org/10.1002/adma.202209104
Resumen: Space cooling and heating, ventilation, and air conditioning (HVAC) accounts for roughly 10% of global electricity use and are responsible for ca. 1.13 gigatonnes of CO2 emissions annually. Adsorbent-based HVAC technologies have long been touted as an energy-efficient alternative to traditional refrigeration systems. However, thus far, no suitable adsorbents have been developed which overcome the drawbacks associated with traditional sorbent materials such as silica gels and zeolites. Metal–organic frameworks (MOFs) offer order-of-magnitude improvements in water adsorption and regeneration energy requirements. However, the deployment of MOFs in HVAC applications has been hampered by issues related to MOF powder processing. Herein, three high-density, shaped, monolithic MOFs (UiO-66, UiO-66-NH2, and Zr-fumarate) with exceptional volumetric gas/vapor uptake are developed—solving previous issues in MOF-HVAC deployment. The monolithic structures across the mesoporous range are visualized using small-angle X-ray scattering and lattice-gas models, giving accurate predictions of adsorption characteristics of the monolithic materials. It is also demonstrated that a fragile MOF such as Zr-fumarate can be synthesized in monolithic form with a bulk density of 0.76 gcm−3 without losing any adsorption performance, having a coefficient of performance (COP) of 0.71 with a low regeneration temperature (≤ 100 °C).
Patrocinador/es: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (NanoMOFdeli), ERC-2016-COG 726380, Innovate UK (104384) and EPSRC (EP/S009000/1). N.R. acknowledges support from the Cambridge International Scholarship and the Trinity Henry-Barlow Scholarship (honorary). D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. The XPS facility and the Tecnai F20 TEM are supported through the Cambridge Royce facilities grant EP/P024947/1 and Sir Henry Royce Institute—recurrent grant EP/R00661X/1. J.S.A. would like to acknowledge financial support from Ministerio de Ciencia e Innovación (Project PID2019-108453GB-C21).
URI: http://hdl.handle.net/10045/133853
ISSN: 0935-9648 (Print) | 1521-4095 (Online)
DOI: 10.1002/adma.202209104
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Revisión científica: si
Versión del editor: https://doi.org/10.1002/adma.202209104
Aparece en las colecciones:INV - LMA - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCamur_etal_2023_AdvMater.pdf3,86 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons