Bare-Metal Redundant Multi-Threading on Multicore SoCs under Neutron Irradiation

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/132363
Información del item - Informació de l'item - Item information
Título: Bare-Metal Redundant Multi-Threading on Multicore SoCs under Neutron Irradiation
Autor/es: Serrano-Cases, Alejandro | Martínez-Álvarez, Antonio | Bastos, Rodrigo Possamai | Cuenca-Asensi, Sergio
Grupo/s de investigación o GITE: UniCAD: Grupo de investigación en CAD/CAM/CAE de la Universidad de Alicante
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Tecnología Informática y Computación
Palabras clave: COTS | Neutron Radiation | Triple Modular Redundancy | Redundant Multi-Threading | Single-Board-Computer | System on Chip
Fecha de publicación: 22-feb-2023
Editor: IEEE
Cita bibliográfica: IEEE Transactions on Nuclear Science. 2023, 70(8): 1643-1651. https://doi.org/10.1109/TNS.2023.3247129
Resumen: A software technique is presented to protect commercial multi-core microprocessors against radiation-induced soft errors. Important time overheads associated with conventional software redundancy techniques limit the feasibility of advanced critical electronic systems. In our approach, redundant bare-metal threads are used, so that critical computation is distributed over the different micro-processor cores. In doing so, software redundancy can be applied to Commercial Off-The-Shelf (COTS) micro-processors without incurring high-performance penalties. The proposed technique was evaluated using a low-cost single board computer (Raspberry Pi 4) under neutron irradiation. The results showed that the Redundant Multi-Threading versions detected and recovered all the Silent Data Corruption (SDC) events, and only increased HANG sensitivity with respect to the unhardened original versions. In addition, higher Mean Work to Failure (MWTF) estimations are achieved with our bare-metal technique than with the state-of-the-art bare-metal software-based techniques that only implement temporal redundancy.
Patrocinador/es: The research reported in this paper has been partially supported through the following projects: MultiRad (funded by Région Auvergne-Rhône-Alpes, France); IRT Nanoelec (French National Research Agency ANR-10-AIRT-05 project funded through the Program d’investissement d’avenir); UGA/LPSC/-GENESIS platform and PID2019-106455GB-C22 (funded by the Spanish Ministry of Science and Innovation).
URI: http://hdl.handle.net/10045/132363
ISSN: 0018-9499 (Print) | 1558-1578 (Online)
DOI: 10.1109/TNS.2023.3247129
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Revisión científica: si
Versión del editor: https://doi.org/10.1109/TNS.2023.3247129
Aparece en las colecciones:INV - UNICAD - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailSerrano-Cases_etal_2023_IEEE-TNS_accepted.pdfAccepted Manuscript (acceso abierto)908,63 kBAdobe PDFAbrir Vista previa
ThumbnailSerrano-Cases_etal_2023_IEEE-TNS_final.pdfVersión final (acceso restringido)3,76 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.