
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 1

Bare-Metal Redundant Multi-Threading on
Multicore SoCs under Neutron Irradiation

A. Serrano-Cases1, A. Martı́nez-Álvarez2, R. Possamai Bastos3, and S. Cuenca-Asensi2

Abstract—A software technique is presented to protect com-
mercial multi-core microprocessors against radiation-induced
soft errors. Important time overheads associated with conven-
tional software redundancy techniques limit the feasibility of
advanced critical electronic systems. In our approach, redundant
bare-metal threads are used, so that critical computation is
distributed over the different micro-processor cores. In doing
so, software redundancy can be applied to Commercial Off-
The-Shelf (COTS) micro-processors without incurring high-
performance penalties. The proposed technique was evaluated
using a low-cost single board computer (Raspberry Pi 4) under
neutron irradiation. The results showed that the Redundant
Multi-Threading versions detected and recovered all the Silent
Data Corruption (SDC) events, and only increased HANG
sensitivity with respect to the unhardened original versions. In
addition, higher Mean Work to Failure (MWTF) estimations
are achieved with our bare-metal technique than with the
state-of-the-art bare-metal software-based techniques that only
implement temporal redundancy.

Index Terms—COTS, Neutron Radiation, Triple Modular Re-
dundancy, Redundant Multi-Threading, Single-Board-Computer,
System on Chip.

I. INTRODUCTION

Today, an increasing number of industrial domains are
adopting Commercial Off-The-Shelf (COTS) processors, to
implement critical electronic systems. The application of
these systems ranges from mainstream aerospace and mili-
tary sectors to emergent markets, such as high-performance
computing, autonomous vehicles, and medical devices. The
inclusion of the new COTS processors within those systems
are due to their improved flexibility and performance and their
reduced costs. Compared to (rad-hard) hardened processors,
commercial devices offer potentially significant performance-
related advantages, due to their inherent parallel computing
structures. In addition, semiconductor process innovations
have considerably reduced energy consumption. Unfortunately,
even though these alternatives to other specifically designed
circuits are promising, the manufacturing process of electronic

The research reported in this paper has been partially supported through
the following projects: MultiRad (funded by Région Auvergne-Rhône-Alpes,
France); IRT Nanoelec (French National Research Agency ANR-10-AIRT-05
project funded through the Program d’investissement d’avenir); UGA/LPSC/-
GENESIS platform and PID2019-106455GB-C22 (funded by the Spanish
Ministry of Science and Innovation).

1A. Serrano-Cases works at the Barcelona Supercomputing Center (BSC)
(e-mail: alejandro.serrano@bsc.es).

2A. Martı́nez-Álvarez and S. Cuenca-Asensi are staff members at the
Computer Technology Department, University of Alicante, Carretera San
Vicente del Raspeig s/n, 03690 Alicante, Spain (e-mail: amartinez@dtic.ua.es;
sergio@dtic.ua.es).

3Rodrigo Possamai Bastos works at the Univ. Grenoble Alpes, CNRS,
Grenoble INP, TIMA, 38000 Grenoble, France (e-mail: rodrigo.bastos@univ-
grenoble-alpes.fr).

components and higher operating frequencies makes them
more vulnerable to radiation-induced faults. It is therefore
critical to equip commercial processors with safety-critical ca-
pabilities that ensure fault-tolerance computing, which implies
fault detection and computation-process recovery capabilities,
even in the presence of faults.

The hardening of electronic devices has generally involved
the use of spatial and/or temporal redundancy. Thus, if there
are sufficient copies of the data, radiation-induced faults may
be detected and/or corrected as the computation process is
replicated. The protection techniques can be implemented at
different layers of the electronic set up: hardware, software,
or even hybrid combinations.

Redundancy can be introduced with hardware techniques
that apply summary functions (CRC, DMC, EDAC,. . .) to
verify data integrity or that replicate some components to
create redundant hardware blocks. Focusing on the last group,
the Dual and Triple redundant Core lockstep (DCLS/TCLS)
[1], [2] techniques replicate the whole processor for system
output comparisons every clock cycle. This strategy enables
the detection of any mismatch during the execution of the
code. Additionally, TCLS offers system recovery capabilities,
using faultless cores to mask incorrect computation of the
faulty core. Although both techniques present high fault cov-
erage rates, several drawbacks may also be mentioned. The
former (DCLS) introduces high performance and hardware
overheads to maintain the computing context and to enable
fault recovery capabilities (roll-back). In comparison, the latter
(TCLS) requires an extra core and implies a conservative
over-verification to keep the three replicated cores under syn-
chronization. Unfortunately, these strategies imply customized
software design and hardware that increase overall system
development costs.

In contrast, techniques based on software modifications aim
to execute protected software on unreliable hardware, primar-
ily COTS devices. The software techniques to some extent
mirror the hardware; software-structure and data replication
at different software levels -programs, functions, loops, and
instructions- ensure reliable computation. Although software
modifications involve lower impacts on development costs
than the hardware counterpart, their application, nevertheless,
presents relevant overheads in terms of performance and
resource usage.

In this investigation, a portable software-based technique
is presented that improves multi-core COTS processors by
enabling programmed soft-error fault tolerance capabilities.
It is an extension and improvement of our previous bare-
metal approaches [3], and [4], which follows a two-thread
duplication scheme with comparison & re-execution (multi-

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 2

thread DWC-R). The novelty of the current work resides in
re-targeting and adapting them to COTS devices with a higher
number of cores, which better matches the current reality of
COTS. Moreover, this adoption was intended to improve some
drawbacks of previous proposals, such as the need to preserve
the execution context or the time overhead introduced by the
recovery mechanism. The software is modified with the new
technique, to reproduce redundancy, taking advantage of the
available cores on the micro-processor to run multiple instruc-
tion flows (i.e., threads). It can therefore detect and mask
transient faults in memory cells, avoiding system failures, by
comparing the replicated data and running majority voting
on the outcome. If an abnormal and uncorrectable state is
detected, the system is stopped, so that state will not be prop-
agated. The system then awaits a reset signal to be triggered,
prompting recovery to a fault-free state. Compared to other
software-based solutions which implement a fine-grain Triple
Modular Redundancy (TMR) [5], our technique operates at the
function/loop level, reducing the injection of redundant code
and avoiding any need for continuous verification. Thus, the
probability of Silent Data Corruption (SDC) is significantly
reduced. In addition, the use of redundant threads speeds up
computation and lowers the time overheads associated with
single-thread schemes [5], [6]. On the contrary, its sensitivity
to potential issues related to thread synchronization is higher,
which may risk increased hang events. Careful consideration
must therefore be given to availability requirements when
using this technique.

The implementation presented in this study was built on a
low-cost computer, also known as a Single Board Computer
(SBC). More precisely, the Raspberry Pi v4 (RPI4) was
equipped with a state-of-the-art ARM Cortex-A72 processor
(BCM2711) manufactured by Broadcom. The system was
evaluated under radiation at the Subatomic Physics & Cos-
mology Laboratory (LPSC, Grenoble, France) using mono-
energetic neutrons.

II. RELATED WORKS

The ubiquity of modern multi-core processors has been con-
solidating the emergence of new multi-instruction flow com-
puting paradigms. With respect to the aforementioned group
of hardware techniques, which are based on DCLS/TCLS,
modern shared memory multi-core devices can now efficiently
perform multiple copy executions of the same instruction flows
within separate units.

The technique known as Redundant Multi-Threading (RMT)
was first proposed in [7], to leverage redundant computing
resources, for detecting and recovering soft errors through
simultaneous multi-threading. In this study, the concept of
the Sphere of Replication (SoR) is also defined as the set
of resources, hardware, or software, which are replicated.
So the dynamics of the SoR imply that data inputs must
be replicated and, in contrast, data outputs must be checked
to ensure their integrity. Since then, the effects of soft er-
rors have been addressed through different RMT approaches
that involve compilers [8], [9], operating systems [10], and
application-based techniques [11], [12]. All these approaches

shared the evident drawback in performance/size overheads
and susceptibility to errors, which was produced because
of the additional software layers involved in the techniques.
Evidence of higher susceptibility to errors which resulted in a
higher rate of Operating System crashes and SDC events were
presented in [13] and [11]. Those proposals were only tested
on simulators with promising results, but were never assessed
on real devices.

Automatic mitigation tools such as Trikaya [6] and COAST
[5] generate hardened applications from high-level source
code. Those tools are designed to protect bare-metal single-
threaded code, by means of temporal redundancy (the code
is repeatedly executed) and spatial redundancy (some data are
replicated). On the one hand, the Duplication With Compar-
ison (DWC) technique is applied with the Trikaya tool at a
functional level. It consists of running the critical code twice
on the same core and comparing the results; if any discrepancy
is observed, a rollback with re-execution is performed for an
eventual vote on the result. The use of just one execution
thread penalizes performance and increases the fault-exposure
time of sensitive data. In addition, the recovery time is higher
with respect to a multi-threaded approach (re-execution vs
voting mechanism). A DWC single-thread version of the
benchmark was added to the radiation campaign, to evaluate
the differences between them, as will be discussed in Section
V. A multi-threaded version of this technique (i.e., multi-thread
DWC-R) was studied at different protection granularity levels
in [3]. Furthermore, authors in [4] explored the combination
of a two-thread DWC-R version with a custom IP for monitor-
ing the control-flow. The technique produced a performance
overhead of 2.5× and offered improvements of one order of
magnitude in the cross-section of total errors.

On the other hand, the COAST tool injects redundant
instructions and checkers at assembly level, according to the
rules described in [14]. COAST has been used to apply TMR
in different architectures [5] and benchmarks [15] following
a single-thread execution scheme. The results showed that
a percentage of SDCs passed undetected to the TMR. The
performance overhead obtained was over 3× in the majority
of the cases and different improvement levels were observed
in the cross-section.

Hardware-based redundancy techniques are much less com-
mon than their software counterparts, because they usually
need architectural modifications or custom module additions.
In [16], two Field Programmable Gate Array (FPGA)-based
Intellectual Property (IP)-cores were used to implement a
lockstep, a checkpoint with rollback recovery, and on-demand
configuration memory scrubbing, for the protection of periodic
tasks running on two LEON processors. The overhead was
significantly reduced with respect to state-of-the-art TMR-
based techniques. Similarly, a rollback/recovery mechanism
using the 2-core ARM cortex-A9 programmable resources of
an FPGA was implemented in [2]. The test application was
manually split into several blocks, running simultaneously
on both cores. Each block was delimited by means of a
verification point, which when triggered, activated customized
hardware, so that program context and data were saved in a
dual-port private memory where the data could be compared

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 3

.text (shared)

shadow

thread_2

Memory structure

.data0/.bss0/.rodata0 .data1/.bss1/.rodata1

primary

thread

non critical computation

.data2/.bss2/.rodata2

shadow

thread_1

spinlock

barrier
sleep sleep sleep

spinlock

barrier
sleep sleep sleep

spinlock

barrier
sleep sleep sleep

critical
computation

critical
computation

critical
computation

check(pth, th1) check(th1,th2) check(th2,pth)

non critical computation

vote & restore

Fig. 1. Control flow of Triple Modular Redundancy (TMR) with redundant
multi-threading (RMT).

and analysed to detect mismatches. A modification of this
approach can be found in [17], where the verification process
was performed directly in software. The architecture included
some customized hardware IP to support the synchronized ex-
ecution of redundant blocks of code on multi-core processors.
In addition, several hardware (watchdog timer) and software
mechanisms (exception handlers) were implemented to protect
the system from hangs and unexpected events, accounting for
up to 73% of the detected errors. The proposal was tested in
bare-metal and with a real-time OS.

Only a few of the multi-threading based techniques has
been tested in accelerated radiation experiments [2], [6], [11],
[17] and some of them will be studied in Section V. A more
comprehensive survey on multi-threading and lockstep based
mitigation techniques can be found in the surveys of both [18]
and [19].

III. BARE-METAL MULTI-THREADING APPROACH

Our software technique, Redundant Multi-Threading
(RMT), makes use of common resources available on state-
of-the-art COTS to apply redundancy and to increase system
reliability with minimal additions. We followed the well-
known TMR technique, adding the following characteristics:
replica computing was performed in parallel on different
resources and redundancy was defined in C++ in portable
code.

In this sense, Fig. 1 shows the basic elements that are
needed to enable the execution of redundant threads on bare-
metal multi-core systems. On the one hand, the data struc-
tures (initialized .data, uninitialized .bss and read-only
.rodata) are replicated, to enable the parallel execution of
all the threads. On the other hand, there is only one common

application code (.text section) that is shared between
all the threads. The method is similar to a multi-threaded
program on top of an operating system. However, in our bare-
metal approach, the threads are statistically scheduled/mapped
during the compilation process, to guarantee the simultaneous
execution of all the threads and one thread per core. An op-
erating system or any other supporting software layer , which
might otherwise add complexity to the system, is therefore
unnecessary. In addition, a custom barrier mechanism was
designed to synchronize the threads and to ensure proper
communication between them. The barriers were based on
common resources available on modern multi-core processors:
special shared variables (spinlocks) and atomic instructions,
allowing access to mutually exclusive regions. In general, any
thread that crosses the synchronization barrier remains asleep
until the last thread reaches this point and wakes up the other
threads, so that the execution of the program continues.

As can be seen in Fig. 1, before the critical computation
(i.e., the region of the code that must be protected), there is an
initial barrier to any synchronization of the three threads. The
first to cross the barrier are the shadow threads that then enter
sleep mode. Once the preparation of the redundant execution
is finished in the primary thread, it then crosses the barrier
and the shadow threads are activated, so that they execute
the critical code in parallel with the primary thread. Another
barrier, after the critical region, ensures that all the threads
will have finished the computation before voting on the results.
At that point, the results are checked and a two-phase voting
process ensues (with a barrier in between). First, the output
variables of each thread are checked against its neighbor’s
output and one status bit is updated within a shared variable.
Second, once all the checks have been performed, the three
bits of the shared variable are tested in the primary thread,
followed by majority voting. Any corrupted variables are also
restored in the process, if needed.

Our approach presents two main limitations that should be
assessed. First and in a similar way to other RMT techniques,
our approach is susceptible to common mode failures, as the
application code is not replicated. However, the execution of
the threads is staggered when RMT is applied to multi-core
processors, because of the serialized memory access and the
use of local decoding buffers that can store many instructions.
As a consequence, the possibility of common mode failures is
reduced. Furthermore, only if all the results of each thread are
identically erroneous will any error affecting the .text section
go unnoticed. This situation is unlikely, as the memory space
and the data management instructions are separately managed
for each thread.

A second collateral effect is related to the synchronization
of threads. As mentioned earlier, at each sync point all threads
must have crossed the barrier for execution to continue,
therefore any error which causes just one single thread to
hang before crossing the barrier will mean that the rest of
threads remain in sleep mode. Hence, synchronization barriers
increase the probability of hangs, as more threads are running
in parallel. The problem can be addressed through the addition
of common monitoring mechanisms such as watchdogs and
exception subroutines.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 4

The Board Support Package (the files that guide the com-
pilation process) was modified, and a custom C++ library
was developed, for easy adoption and implementation of the
approach. Including the library, the user only has to add minor
modifications to its source code, e.g., changing the data type of
variables and including some macros to define the regions of
code. The variable replicas, the synchronization, and the voting
mechanisms are automatically added during the compilation
process.

Figure 2 shows how the hardening instrumentation was
applied to the original C++ code. Data protection was se-
lectively and explicitly applied to each variable in use (A,
B, and Res). To do so, three macros were employed. The
first, BSS_TRIPLICATION, replaces the classical definition
of the variable by three replicas allocated to different private
.bss sections (i.e. .bss0, .bss1 and .bss2). Our library provides
a macro for each type of data section (e.g. .bss, .data, .rodata,
etc...). It also creates a shared 3-bit variable, transparent to the
user, to store the status of the replicas after the critical com-
putation. Each triplication macro is followed by a define. It
defines an alias of the pointers created by the PTR macro to
mask the replica access. The third macro, REPLICA_VAR, is
activated within the function where the variable will be used
and ensures that each replica is computed inside an exclusive
memory area (i.e., our Sphere of Replication is extended to the
memory). It selects the correct replica according to the core
identifier (core_ID) and assigns it to a pointer. The pointer
will be allocated within the local stack or a (local) register
of the core. Any other variable within the SoR (i.e., i, j, k) is
automatically triplicated in its own core address space. As can
be seen in the test function implementation (fig. 2), the alias
of the (globally defined) variables gives access to the replicas
using the indirection defined in PTR.

The main function is instrumented adding the needed syn-
chronizations points (barrier): before starting the critical
code, before local checks on the results, and before the global
voting process. Since four cores are available in Cortex-A72
processor, cores 0 to 2 are employed to run the shadow threads
and core 3 is devoted to the primary thread. Different voting
macros are available, depending on the code and the kind
of protection that is needed. For instance, VOTE macro can
be used to return just one correct copy of the result, while
VOTE_RESTORE is a command to continue the computation
using the three replicas. Additional code, labeled as “non
critical stuff”, is needed for reporting to the host during the
radiation experiments.

IV. RADIATION EXPERIMENTS

The radiation experiments were carried out at the Subatomic
Physics & Cosmology Laboratory (LPSC, Grenoble, France)
in February 2022 using a GENEPI2 (GEnérateur de NEutrons
Pulsé Intense), a high intensity, pulsed neutron generator.
GENEPi2 is a mono-energetic neutron generator with a max-
imum flux that exceeds the natural flux of 14-MeV neutrons
at 40,000 ft by a factor of 1010. The relevance of the 14-MeV
neutron test for characterization of the Single Event Upset
(SEU) sensitivity of digital devices is discussed in [20]. The

/** Variable annotation & allocation **/
BSS_TRIPLICATION(matrix, A)
#define A, PTR(A)
BSS_TRIPLICATION(matrix, B)
#define B, PTR(B)
BSS_TRIPLICATION(matrix, Res)
#define Res, PTR(Res)

/** Initialization of inputs **/
void initMat(int seed)
{
REPLICA_VAR(matrix, A)
REPLICA_VAR(matrix, B)
// random initialization of matrices

}

/********* Critical code ***********/
void test()
{
REPLICA_VAR(matrix, A)
REPLICA_VAR(matrix, B)
REPLICA_VAR(matrix, Res)
register int i, j, k;
for (i = 0; i < SIZE; i++)
for (j = 0; j < SIZE; j++)
{

Res [i][j] = ZERO;
for (k = 0; k < SIZE; k++)

Res[i][j] += A[i][k] * B[k][j];
}

}

/********* Main ************/
int main()
{
GETID // get the core ID
if (core==3) {

// do non critical stuff
}
barrier(); // start of critical code
initMat(s);
test();
barrier(); // sync to start checking
TMR_CHECK(Res) // distributed checking
barrier(); // sync to start voting
VOTE(Res) // or vote & restore
if (core=3){

// do non critical stuff
}

}

Fig. 2. Hardening instrumentation of the matrix multiplication algorithm
(inserted macros and functions are highlighted in blue).

same authors also proposed a model to extrapolate 14-MeV
neutron results to other neutron and proton energies. Since
then, several works have used mono-energetic neutrons, to
evaluate the SEU sensitivity of multi-core processors [21],
FPGAs [22] and memories [23].

A total fluence higher than 4.0 × 1010neutron/cm2 was
chosen to achieve statistical significance for the different
experiments, by accumulating event counts from multiple runs.
Three radiation campaigns were performed during February
and July 2022 with an average flux of 1.13× 107, 9.20× 106

and 4.71× 106neutron/cm2/s respectively.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 5

Fig. 3. Experimental setup of the High Intensity Pulsed Neutron Generator
GENEPi2 facility

A Raspberry Pi v4 (RPI4) equipped with a BCM2711 SoC
was selected as the Device Under Test (DUT), to assess our
technique under radiation. The SoC is based on a quad-core
ARM Cortex-A72 multiprocessor (ARMv8 architecture). This
device was placed on an external beamline and subjected to
an open-air irradiation process (fig.3).

The DUT was connected using Ethernet and TTL/UART
to another RPI4 board used as the control computer outside
the radiation chamber. During the experiments, the DUT was
continuously emitting a keep-alive message to the control
computer via UART. This message only included the number
of runs executed and some auxiliary bytes of information. The
time interval between successive messages was adjusted for
each benchmark, to reduce the weight of the communication
tasks with respect to the total execution time. In doing so, one
notification was sent at approximate intervals of one minute.

The control computer was in charge of uploading the
different benchmarks to the DUT using the Ethernet link and
the Pre-Execution Environment (PXE) protocol. In addition,
it recorded all the DUT output messages, and triggered the
corresponding power cycle when the DUT entered into a non-
response state.

During the experiments, three different anomalous states of
the DUT were considered as possible events:

• A HANG event is detected when the DUT is unable to
emit a keep-alive message within a period of time three
times longer than the normal report.

• Silent Data Corruption (SDC) occurs when the code
runs correctly, but the computation is incorrect. This event
is detected by checking the computation outcome using
a golden output.

• Detect (SDC detected) refers to the case in which a pro-
gram that is running with hardening capabilities detects
an error within the computed data by checking the output
of the replicas.

The applications running on the DUT were instrumented,
following the method defined in [24], to check the results
against a golden output, so that any mismatch could be notified
as soon as it happened.

The well-known matrix multiplication algorithm was the
main benchmark that was selected to assess our hardening
technique under mono-energetic neutrons. The benchmark
was configured to test two different computing units: the

integer ALU and the floating point ALU, by supporting two
different data types: 64-bit (long long - L) integers, and 64-
bit (double - D) floating points. We performed the experiment
using two matrix sizes: 32×32 and 128×128. The benchmark
was also tested in three different versions, depending on the
hardening technique applied: Original (mm), Duplication With
Comparison & Re-execution (mmDWC), Redundant Multi-
Threading (mmRMT). Note that the DWC-R described in [4]
and [6] used only one core to perform two identical executions
of the critical section. Only if a mismatch was detected, was
a third execution implemented. The mem benchmark was
also provided for the assessment with the sole purpose of
measuring the sensitivity of the external Double Data Rate
(DDR) memory.

Table I shows the static characterization of the application
overheads: resource utilization (number of cores), memory
footprint (data), and performance (exec. Time). As can be seen,
resource utilization in the hardened versions using the RMT
technique increased, as was expected, by a factor of 3. In
contrast, the same overheads as the unhardened versions were
observed in the conventional technique (mmDWC), which uses
a single core. All of them showed an increase in memory
structures, in terms of memory footprint. In the case of
the mmDWC, only two output matrices were used to fit
the original and the redundant calculation. In contrast, the
RMT versions showed an increase of 3×, because all the
matrices had to be replicated so that computation (inputs and
results) could proceed. Moving to the performance overhead,
it can be seen that the mmDWC showed, as expected, the
worst performance, because it was sequentially computing
the replica outcomes. In the case of the mmRMT versions,
the synchronization mechanism for the verification of replica
outcomes produced the overhead. Note that the fewer the
number of matrix elements and the smaller the matrix size,
the greater the impact of the verification routine (see mmRTM-
L32).

V. RESULTS AND DISCUSSION

A. Cross-section

The results of the radiation experiments are shown in
Table II. The total fluence values accumulated for each bench-
mark (Φ) are listed in the third column and the number of
events observed (#SDC, #DetRec, #HANG) and the corre-
sponding cross-section (σ) for each type of event are shown
in the other columns. Upper and lower error margins can be
seen above and below the cross-sectional measurements. They

TABLE I
TIME AND SIZE OVERHEADS

benchmark #cores data exec. Time

mmDWC-L128 1× 1.33× 2.19×
mmRMT-L32 3× 3× 1.59×
mmRMT-L128 3× 3× 1.34×
mmRMT-D128 3× 3× 1.34×

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 6

were calculated using the inverted chi square distribution as
described in [25], at a confidence level of 95% considering a
fluence uncertainty of ±10%. An additional category labeled
as Total is included. It represents the total harmful events in
the experiment, i.e., SDC + HANG. Notice that all SDC events
were detected and corrected in the RMT versions, so the Total
and the HANG cross-sections were equal in those cases.

The first benchmark (mem) was used to report a baseline
of the architectural board sensitivity, mainly external memory
resources (caches were disabled in bare-metal). Mem code
writes a vector of 64KB to memory and reads it back re-
peatedly to detect any error. Only three events were reported
for this benchmark during the assessment time, providing a
cross-section of 3.47× 10−11 and 1.74× 10−11 for SDC and
HANG, respectively.

Focusing on the original Matrix Multiplication benchmark,
the L32 versions presented a reduced memory footprint when
compared to the mem version. However, its superior usage of
processor resources justifies the increase in the cross-section.
An increase of 68% in the total cross-section of the unhardened
version (mm-L32) was observed, while the increase in the total
cross-section of the redundant version (RMT-L32) was around
55%, due to its ability to detect soft errors. Remarkably, the
RMT-L32 version detected and recovered all the SDC events
(now labeled as Det/Rec), but at the cost of an increase in
the HANG sensitivity, at around 1.8× from 4.38 × 10−11

to 8.09 × 10−11. The cause was related to the additional
resources needed to run the redundant threads (3 cores vs
1 core) and the synchronization constraint imposed by the
technique. As mentioned in Section III, if any one thread at
any one time fails to reach the synchronization point, then
the synchronization barriers limit the progress of the threads
and the whole program hangs. Consequently, a very limited
improvement in the total cross-section was shown for the
RMT.

When RMT was applied to process matrices of higher sizes
(D128 and L128), improvements in the levels of SDC were
detected. In both cases, integer and floating point data types,
all SDC events, were detected and corrected. Predictably,
there was also a worsening of the HANG cross-section which
reached an increment of 4.2× (RMT-L128) and 2× (RMT-
D128) with respect to the unhardened version (mm-L128).
Even so, the integer version offered a slightly improved overall
cross-section, achieving a 2.6× improvement in the case of the
floating version.

Finally, the DWC technique was tested and compared with
our RMT approach. As can be appreciated, the DWC-L128
benchmark presented a lower detection & recovery cross-
section (2.46 × 10−11) than its RMT counterpart (3.18 ×
10−11), which may be attributed to the different data volumes
of each technique. The original inputs (matrices A and B) were
processed twice for the DWC benchmark and two replicas of
the result were produced (i.e., 2.25× of memory overhead),
while all the inputs and outputs were triplicated in the multi-
threaded (RMT) version. It means a lower Det/Rec cross-
section of DWC version (2.46 vs 3.18 and 2.88). On the
contrary, DWC offered a worsening of 6.2× in the HANG
cross-section (1.37× 10−11 vs 8.44× 10−11). So, even when

triplicating the numbers of cores in use, our approach was
less sensitive to HANG errors than the other state-of-the-
art techniques. Consequently, the total cross-section of both,
RMT-L128 and RMT-D128, outperformed the cross-setion of
DWC-L128 by 1.45 times and 3.2 times.

Taking into account that HANG errors can generally be
managed with conventional monitoring mechanisms, it is
worth analysing the SDC cross-section separately. Although
no SDC events were observed for the hardened versions,
the cross-section can be calculated as 1/Φ, (i.e., assuming
the worst-case where an error could be observed in the
very next instant of the experiment). In this case, the RMT
versions outperformed the σSDC of the corresponding unmit-
igated benchmarks by 7.6× (L32), 6.3× (L128), and 12.2×
(D128). These improvements clearly exceeded those provided
by DWC, which only achieved up to 0.4× (L128). They also
revealed that the floating point units were less sensitive to
radiation than the integer units.

B. Failure Rate Metrics

In Table III, the Failures in Time (FIT), are presented, which
refer to the number of expected failures per one billion hours
of operation for a device. The FIT values were normalized
using the sea level flux of 13n/(cm2 · h) as suggested in the
JESD89 standard [26]. The table follows the same structure as
Table II and therefore reproduces the same headings. It can be
observed that the DWC offers the worst FIT, because of the
high impact the HANGs have on it. The same reason applies
to the rest of the hardened versions which slightly increases
the total FIT. Only the mm-RMT-D128 version reduced the
total FIT from 6.18 to 3.86.

The cross-section and the FIT metrics do not take into
account the performance or time overheads which are inherent
to the software-based technique. Therefore, the MWTF metric
[27] is often used to compare different protection techniques,
as it captures the trade-off between the error rate and the
time overhead. MWTF can be calculated from the results of
a radiation experiment as follows:

MWTF = (Flux · σ · ExecutionT ime)−1

where the ExecutionT ime is the time needed to compute
a single benchmark workload in seconds, σ is the dynamic
cross-section, and Flux is the radiation flux.

Table III also shows the MWTF improvements with respect
to the corresponding unmitigated version (mm-L32 and mm-
L128). Considering the totality of all errors, the MWTF
was not increased in the multi-threaded version. Despite
the parallelism of the RMT technique, there was a time
overhead inherent to the checking and synchronization tasks
which reduce the amount of work computed before the fault.
Furthermore, the synchronization mechanism is sensitive to
radiation and is often triggered, due to the short duration of the
benchmarking process, thereby raising the number of HANG
errors. Both factors contributed to a reduction in the overall
MWTF, in such a way that only the mmRMT-D128 version
can match the value obtained by the original version.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 7

TABLE II
NEUTRON BEAM TEST RESULTS

#events σ × 10−11(cm2)

bench cores Φ(n/cm2) #SDC #Det/Rec #HANG SDC Det/Rec HANG Total

mem-L64K 1 5.76× 1010 2 − 1 3.47 12.1
0.0 − 1.74 10.4

0.0 5.21 15.6
1.7

mm-L32 1 1.60× 1011 7 − 7 4.38 9.4
1.9 − 4.38 9.4

1.9 8.77 15.0
5.0

mmRMT-L32 3 1.73× 1011 N/A 9 14 ∗∗0.578 3.5
0.0 7.96 15.0

3.5 8.09 13.9
4.6 8.09 13.9

4.6

mm-L128 1 2.19× 1011 10 − 3 4.58 8.70
2.3 − 1.37 4.1

0.5 5.95 10.5
3.2

mmDWC-L128 1 5.92× 1010 N/A 1 5 ∗∗1.69 10.1
0.0 2.46 14.8

0.0 8.44 20.3
3.4 8.44 20.3

3.4

mmRMT-L128 3 1.38× 1011 N/A 6 8 ∗∗0.752 4.4
0.0 3.18 6.9

1.1 5.80 11.6
2.2 5.80 11.6

2.2

mmRMT-D128 3 2.66× 1011 N/A 4 7 ∗∗0.375 2.3
0.0 2.88 7.2

0.7 2.63 5.6
1.1 2.63 5.6

1.1

∗∗ No errors observed, so for comparison purposes this is calculated given one error (assuming the worst-case)

However, looking at nothing other than the SDC contribu-
tion, it can be seen that the MWTF was increased with our ap-
proach from 3.9× (mmRMT-L128) to 5.3× (mmRMT-D128).
These values were in the same range as those offered by other
software-based state-of-the-art proposals, as is described in the
following subsection.

TABLE III
FAILURES METRICS: FAILURES IN TIME AND MEAN WORK TO FAILURE

INCREASE REGARDING THE UNHARDENED VERSIONS

FIT ∆MWTF

bench SDC HANG Total SDC Total

mm-L32 4.78 4.78 9.56 1.0 1.0

mmRMT-L32 0.00 9.65 9.65 4.81 0.69

mm-L128 4.75 1.43 6.18 1.0 1.0

mmDWC-L128 0.00 10.94 10.94 1.01 0.26

mmRMT-L128 0.00 6.47 6.47 3.88 0.63

mmRMT-D128 0.00 3.86 3.86 5.34 0.98

C. Comparison with related works

Among all the results of the software-based approaches
tested under radiation there were only a few that stood compar-
ison with our proposal. Table IV summarizes the main features
and results of three of the state-of-the-art techniques [14],
[6], [17]. Beams of a different nature and energy (low energy
protons, atmospheric and mono-energetic neutrons) were used
for testing in all of the studies, making any direct comparison
of the cross-section impossible. However, valuable information
on the performance of the technique can be appreciated in
the relative improvements reported (marked in bold). Please
note that in all the works they refer to cross-section and
MWTF as the contribution of the SDC events exclusively. Thus
σHANG was calculated from the total fluence and event counts
provided by the authors.

The Matrix multiplication benchmark running on similar
ARM architectures was the only benchmark considered for

comparative purposes. Note that the benchmarks follow the
same coding name, mmXX-YZZ, where XX refers to the
technique applied, Y refers to the data type, and ZZ to the
size of the square matrices. They are grouped in four sets
related to the mitigation technique applied and from which
the radiation data were obtained.

The VAR technique [14] defines a set of rules to triplicate
data and instructions at assembly level and running on a single-
core. Authors in [15] use the COAST tool to produce TMR-
processed portable versions automatically from several source
code benchmarks, reporting σSDC improvements from 4× up
to two orders of magnitude. As can be seen, they tested the
benchmark running on bare-metal with and without activating
the memory caches, resulting in σSDC (MWTFSDC) enhance-
ments of 4.3× (1.2×) and 31.7× (10.1×) respectively.

The Macro Lockstep approach (MLockstep) [17] incor-
porates a rollback/recovery mechanism to synchronize the
redundant execution of two cores. Although no single-core
version was evaluated in this work, the data were completed
with the results reported in [28] at the same facility and using
an identical setup. In this way, the improvements relating to
the baseline version were calculated with a value of 16.7× for
the bare-metal version and 7.3× for the version running on an
Operating System.

Finally, the single-core version of the DWC technique was
evaluated in our own work. We followed the description in [6]
to implement the DWC version, so that it could be considered
equivalent to the COAST produced benchmark. As can be
seen, it obtained the worst results: 0.4× and 1.01× for σ and
MWTF respectively.

Regarding the RMT approach, it can be appreciated that our
results were the best for the bare-metal/no-cache configura-
tions. The cross-section was reduced by 7.6× (RMT-L32) and
6.3× (RMT-L128) vs 4.3× (VAR) and 0.4× (DWC), while
the MWTF was increased 4.8×/3.9× vs 1.2×/1.01×. These
results remain true even considering two detrimental factors
in our experiments: the larger sizes of the matrices employed
(32 and 128 vs 30) and the protection of the external memory
(not included in other techniques). Furthermore, the increase

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 8

TABLE IV
COMPARISON TABLE OF RELATED WORKS

Tech, [work]
arch, particles

benchmark
configuration

Φ
(ptcl/cm2)

#SDC #Det/Rec #HANG σSDC

(×10−11cm2)
σHANG

(×10−11cm2)
MWTFSDC

(×1010)

VAR [15]
ARM CortexA9
1 core,
atmospheric
neutrons

mm-I30 8.30× 1010 13 N/A 14 16.0 − ⋆16.9 − 0.117 −
mmTMR-I30 8.10× 1010 3 26 19 3.70 ↓ 4.3 ⋆23.5 ↑ 1.4 0.144 ↑ 1.2

mm-I30, Cache 3.70× 1010 28 N/A 3 76.0 − ⋆8.11 − 0.624 −
mmTMR-I30, Cache 8.30× 1010 2 163 165 2.40 ↓ 31.7 ⋆199 ↑ 24.5 6.31 ↑ 10.1

MLockstep [17]
ARM CortexA9
2 cores, protons

∗mm-I20, Cache 1.20× 1012 80 N/A 13 6.67 − ⋆1.08 − N/A −
mmML-I20, Cache 4.90× 1011 2 142 131 0.40 ↓ 16.7 ⋆26.7 ↑ 24.8 N/A N/A

mmML-I20, Cache, OS 5.50× 1011 5 65 183 0.91 ↓ 7.3 ⋆33.3 ↑ 30.8 N/A N/A

RMT [our work]
ARM CortexA72
3 cores,
mono-energetic
neutrons

mm-L32 1.60× 1011 7 N/A 7 4.38 − 4.38 − 42.5 −
mmRMT-L32 1.73× 1011 N/A 9 14 ∗∗0.578 ↓ 7.6 8.09 ↑ 1.8 204 ↑ 4.8

mm-L128 2.19× 1011 10 N/A 3 4.58 − 1.37 − 0.830 −
mmRMT-L128 1.38× 1011 N/A 6 8 ∗∗0.725 ↓ 6.3 5.80 ↑ 4.2 3.22 ↑ 3.9

DWC, 1 core mmDWC-L128 5.92× 1010 N/A 1 5 ∗∗1.69 ↓ 0.4 8.44 ↑ 1.5 0.842 ↑ 1.01
∗ Data obtained from [28], where authors used the same setup and facility as in [17]
∗∗ No errors observed, so for comparison purposes this is calculated given one error (assuming the worst-case)
⋆ Calculated with data provided by [17]

in the σHANG was similar (1.4× vs 1.8× and 1.5×) for a
similar matrix size (32 vs 30).

It is worth noting that unlike our approach, the data in the
external memories are not protected with VAR and MLock-
step, so the Sphere of Replication is limited to the processor
cores and the internal memories (caches). In fact, external
memories were left out of beam during the e [5] and [17]. In
addition, when cache memories were enabled, any sensitivity
to errors significantly increased, as may be observed in the
SDC, Det/Rec and HANG event counts. Enabling the cache
memory offers more opportunities for the technique to mitigate
SDCs and to scale the cross-setion by 31.7× (VAR) and 16.7×
(MLockstep). Also the σHANG increased by one order of
magnitude (around 24× in both cases) which clearly exceeds
the modest worsening of the RMT versions (1.8× and 4.2×).

VI. CONCLUSIONS

A new and portable software technique has been presented
to protect COTS multi-core microprocessors against soft er-
rors. The technique takes advantage of the parallel computing
resources of modern COTS micro-processors to split critical
computation into multiple instruction flows and to design a
redundant and reliable computation. The technique has been
evaluated under radiation using 14MeV neutrons. The results
have shown that single event faults can be detected and
corrected with this technique, improving the results of the
state-of-the-art software-based mitigation techniques for bare-
metal applications. In fact, all the Redundant Multi-Threading
versions that have been presented were capable of detecting
and recovering all the SDC events, and they only increased
the HANG sensitivity moderately, compared to other single
and multi-threading techniques.

No other hardware is required for the design of this redun-
dant and reliable computation method. It was implemented in
this study using a C++ library, making it a highly portable and
transparent for the user.

REFERENCES

[1] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step (TCLS)
ARM® cortex®-r5 processor for safety-critical and ultra-reliable appli-
cations,” in 2016 46th Annual IEEE/IFIP Int. Conference on Dependable
Systems and Networks Workshop (DSN-W). IEEE, jun 2016, pp. 246–
249.

[2] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A.
Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira,
“Lockstep dual-core ARM a9: Implementation and resilience analysis
under heavy ion-induced soft errors,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1783–1790, aug 2018.

[3] S.-C. A. R.-C. F. C.-A. S. et al, “Multi-threaded mitigation of radiation-
induced soft errors in bare-metal embedded systems,” J Electron Test,
vol. 36, pp. 47–57, aug 2020.

[4] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, S. Cuenca-Asensi,
L. Entrena, Y. Morilla, P. Martı́n-Holgado, and A. Martı́nez-Álvarez,
“Hybrid lockstep technique for soft error mitigation,” IEEE Transactions
on Nuclear Science, vol. 69, no. 7, pp. 1574–1581, jul 2022.

[5] B. James, H. Quinn, M. Wirthlin, and J. Goeders, “Applying compiler-
automated software fault tolerance to multiple processor platforms,”
IEEE Transactions on Nuclear Science, vol. 67, no. 1, pp. 321–327,
jan 2020.

[6] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Software
resilience and the effectiveness of software mitigation in microcon-
trollers,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp.
2532–2538, dec 2015.

[7] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” SIGARCH Comput. Archit. News, vol. 28,
no. 2, p. 25–36, may 2000.

[8] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “Daft: Decoupled
acyclic fault tolerance,” in 2010 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT), feb 2010,
pp. 87–97.

[9] K. Mitropoulou, V. Porpodas, and T. M. Jones, “Comet: Communication-
optimised multi-threaded error-detection technique,” in 2016 Interna-
tional Conference on Compliers, Architectures, and Sythesis of Embed-
ded Systems (CASES), oct 2016, pp. 2.3.1–2.3.10.

[10] B. Döbel and H. Härtig, “Can we put concurrency back into redundant
multithreading?” in Proceedings of the 14th International Conference
on Embedded Software, ser. EMSOFT ’14, Art. no. 19. Association
for Computing Machinery, oct 2014.

[11] G. Rodrigues, F. Rosa, A. de Oliveira, F. L. Kastensmidt, L. Ost, and
R. Reis, “Analyzing the impact of fault tolerance methods in ARM
processors under soft errors running linux and parallelization APIs,”
IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2196–2203,
may 2017.

[12] D. P. Hukerikar S., Teranishi K., “Redthreads: An interface for
application-level fault detection/correction through adaptive redundant

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2022 9

multithreading,” International Journal of Parallel Programming, vol. 46,
p. 225–251, oct 2018.

[13] J. S. Monson, M. Wirthlin, and B. Hutchings, “Fault injection results
of linux operating on an FPGA embedded platform,” in 2010 Int.
Conference on Reconfigurable Computing and FPGAs. IEEE, dec 2010,
pp. 37–42.

[14] E. Chielle, F. Rosa, G. S. Rodrigues, L. A. Tambara, J. Tonfat, E. Mac-
chione, F. Aguirre, N. Added, N. Medina, V. Aguiar, M. A. G. Silveira,
L. Ost, R. Reis, S. Cuenca-Asensi, and F. L. Kastensmidt, “Reliability
on arm processors against soft errors through sihft techniques,” IEEE
Transactions on Nuclear Science, vol. 63, no. 4, pp. 2208–2216, aug
2016.

[15] B. James, M. Wirthlin, and J. Goeders, “Investigating how software
characteristics impact the effectiveness of automated software fault
tolerance,” IEEE Transactions on Nuclear Science, vol. 68, no. 5, pp.
1014–1022, may 2021.

[16] M. Violante, C. Meinhardt, R. Reis, and M. Sonza Reorda, “A low-cost
solution for deploying processor cores in harsh environments,” IEEE
Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2617–2626,
2011.

[17] P. M. Aviles, A. Lindoso, J. A. Belloch, M. Garcia-Valderas, Y. Morilla,
and L. Entrena, “Radiation testing of a multiprocessor macrosynchro-
nized lockstep architecture with freertos,” IEEE Transactions on Nuclear
Science, vol. 69, no. 3, pp. 462–469, nov 2022.

[18] I. Oz and S. Arslan, “A survey on multithreading alternatives for soft
error fault tolerance,” ACM Comput. Surv., vol. 52, no. 2, art. no. 47,
pp. 1–38, mar 2019.

[19] E. W. Wächter, S. Kasap, X. Zhai, S. Ehsan, and K. McDonald-
Maier, “Survey of lockstep based mitigation techniques for soft errors
in embedded systems,” in 2019 11th Computer Science and Electronic
Engineering (CEEC), jan 2019, pp. 124–127.

[20] F. Miller, C. Weulersse, T. Carrière, N. Guibbaud, S. Morand, and
R. Gaillard, “Investigation of 14 mev neutron capabilities for seu
hardness evaluation,” IEEE Transactions on Nuclear Science, vol. 60,
no. 4, pp. 2789–2796, feb 2013.

[21] P. Ramos, V. Vargas, M. Baylac, F. Villa, S. Rey, J. A. Clemente, N.-E.
Zergainoh, J.-F. Méhaut, and R. Velazco, “Evaluating the see sensitivity
of a 45 nm soi multi-core processor due to 14 mev neutrons,” IEEE
Transactions on Nuclear Science, vol. 63, no. 4, pp. 2193–2200, jul
2016.

[22] J. C. Fabero, H. Mecha, F. J. Franco, J. A. Clemente, G. Korkian, S. Rey,
B. Cheymol, M. Baylac, G. Hubert, and R. Velazco, “Single event upsets
under 14-mev neutrons in a 28-nm sram-based fpga in static mode,”
IEEE Transactions on Nuclear Science, vol. 67, no. 7, pp. 1461–1469,
mar 2020.

[23] J. A. Clemente, G. Hubert, J. Fraire, F. J. Franco, F. Villa, S. Rey,
M. Baylac, H. Puchner, H. Mecha, and R. Velazco, “Seu characterization
of three successive generations of cots srams at ultralow bias voltage
to 14.2-mev neutrons,” IEEE Transactions on Nuclear Science, vol. 65,
no. 8, pp. 1858–1865, mar 2018.

[24] H. Quinn, W. H. Robinson, P. Rech, M. Aguirre, A. Barnard, M. Des-
ogus, L. Entrena, M. Garcia-Valderas, S. M. Guertin, D. Kaeli, F. L.
Kastensmidt, B. T. Kiddie, A. Sanchez-Clemente, M. S. Reorda, L. Ster-
pone, and M. Wirthlin, “Using benchmarks for radiation testing of
microprocessors and fpgas,” IEEE Transactions on Nuclear Science,
vol. 62, no. 6, pp. 2547–2554, dec 2015.

[25] ESA/ESCC, “Single event effects test method and guidelines. escc basic
specification no. 25100,” Oct 2014.

[26] JEDEC, JESD89A, Measurement and Reporting of Alpha Particle and
Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices.,
JEDEC Solid State Technology Association, 2006.

[27] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan, and
D. I. August, “Design and evaluation of hybrid fault-detection systems,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
jun 2005, pp. 148–159.

[28] A. Lindoso, M. Garcı́a-Valderas, L. Entrena, Y. Morilla, and P. Martı́n-
Holgado, “Evaluation of the suitability of neon simd microprocessor
extensions under proton irradiation,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1835–1842, jul 2018.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3247129

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on February 25,2023 at 16:19:16 UTC from IEEE Xplore. Restrictions apply.

