How bright can old magnetars be? Assessing the impact of magnetized envelopes and field topology on neutron star cooling

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/130935
Información del item - Informació de l'item - Item information
Título: How bright can old magnetars be? Assessing the impact of magnetized envelopes and field topology on neutron star cooling
Autor/es: Dehman, Clara | Pons, José A. | Viganò, Daniele | Rea, Nanda
Grupo/s de investigación o GITE: Astrofísica Relativista
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Stars: neutron | Stars: magnetars | Stars: interiors | Stars: magnetic field | Stars: evolution
Fecha de publicación: 6-ene-2023
Editor: Oxford University Press
Cita bibliográfica: Monthly Notices of the Royal Astronomical Society: Letters. 2023, 520(1): L42-L47. https://doi.org/10.1093/mnrasl/slad003
Resumen: Neutron stars cool down during their lifetime through the combination of neutrino emission from the interior and photon cooling from the surface. Strongly magnetised neutron stars, called magnetars, are no exception, but the effect of their strong fields adds further complexities to the cooling theory. Besides other factors, modelling the outermost hundred meters (the envelope) plays a crucial role in predicting their surface temperatures. In this letter, we revisit the influence of envelopes on the cooling properties of neutron stars, with special focus on the critical effects of the magnetic field. We explore how our understanding of the relation between the internal and surface temperatures has evolved over the past two decades, and how different assumptions about the neutron star envelope and field topology lead to radically different conclusions on the surface temperature and its cooling with age. In particular, we find that relatively old magnetars with core-threading magnetic fields are actually much cooler than arotation-powered pulsar of the same age. This is at variance with what is typically observed in crustal-confined models. Our results have important implications for the estimates of the X-ray luminosities of aged magnetars, and the subsequent population study of the different neutron star classes.
Patrocinador/es: JAP acknowledges support from the Generalitat Valenciana grants PROMETEO/2019/071 and ASFAE/2022/026 (with funding from NextGenerationEU PRTR-C17.I1) and the AEI grant PID2021-127495NB-I00. CD and NR are supported by the ERC Consolidator Grant “MAGNESIA” No. 817661 (PI: Rea) and this work has been carried out within the framework of the doctoral program in Physics of the Universitat Autònoma de Barcelona and it is partially supported by the program Unidad de Excelencia María de Maeztu CEX2020-001058-M. DV is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant "IMAGINE" No. 948582, PI: DV).
URI: http://hdl.handle.net/10045/130935
ISSN: 1745-3925 (Print) | 1745-3933 (Online)
DOI: 10.1093/mnrasl/slad003
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Revisión científica: si
Versión del editor: https://doi.org/10.1093/mnrasl/slad003
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - Astrofísica Relativista - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailDehman_etal_2023_MNRAS.pdf667,73 kBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons