Theory of triangulene two-dimensional crystals

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/130875
Información del item - Informació de l'item - Item information
Título: Theory of triangulene two-dimensional crystals
Autor/es: Ortiz-Cano, Ricardo | Catarina, Gonçalo | Fernández-Rossier, Joaquín
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Theories | Triangulene | Two-dimensional crystals | Carbon magnetism | Flat bands
Fecha de publicación: 6-dic-2022
Editor: IOP Publishing
Cita bibliográfica: 2D Materials. 2023, 10(1): 015015. https://doi.org/10.1088/2053-1583/aca4e2
Resumen: Equilateral triangle-shaped graphene nanoislands with a lateral dimension of n benzene rings are known as [n]triangulenes. Individual [n]triangulenes are open-shell molecules, with single-particle electronic spectra that host n−1 half-filled zero modes and a many-body ground state with spin S = (n−1)/2. The on-surface synthesis of triangulenes has been demonstrated for n = 3, 4, 5, 7 and the observation of a Haldane symmetry-protected topological phase has been reported in chains of [3]triangulenes. Here, we provide a unified theory for the electronic properties of a family of two-dimensional honeycomb lattices whose unit cell contains a pair of triangulenes with dimensions na, nb. Combining density functional theory and tight-binding calculations, we find a wealth of half-filled narrow bands, including a graphene-like spectrum (for na = nb = 2), spin-1 Dirac electrons (for na = 2, nb = 3), px,y-orbital physics (for na = nb = 3), as well as a gapped system with flat valence and conduction bands (for na = nb = 4). All these results are rationalized with a class of effective Hamiltonians acting on the subspace of the zero-energy states that generalize the graphene honeycomb model to the case of fermions with an internal pseudospin degree of freedom with C3 symmetry.
Patrocinador/es: We acknowledge financial support from the Ministry of Science and Innovation of Spain (Grant No. PID2019-109539GB-41), from Generalitat Valenciana (Grants Nos. Prometeo2021/017 and MFA/2022/045), from Fundação para a Ciência e a Tecnologia, Portugal (Grant No. PTDC/FIS-MAC/2045/2021), from SNF Sinergia (Grant Pimag) and from FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Grant No. P18-FR-4834). R Ortiz acknowledges funding from Generalitat Valenciana and Fondo Social Europeo (Grant No. ACIF/2018/175) and Ministry of Science and Innovation of Spain (PID2020-115406GB-I00). G Catarina acknowledges financial support from Fundação para a Ciência e a Tecnologia (Grant No. SFRH/BD/138806/2018).
URI: http://hdl.handle.net/10045/130875
ISSN: 2053-1583
DOI: 10.1088/2053-1583/aca4e2
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Revisión científica: si
Versión del editor: https://doi.org/10.1088/2053-1583/aca4e2
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailOrtiz_etal_2023_2DMater.pdf6,9 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons