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Abstract
Equilateral triangle-shaped graphene nanoislands with a lateral dimension of n benzene rings are
known as [n]triangulenes. Individual [n]triangulenes are open-shell molecules, with single-particle
electronic spectra that host n− 1 half-filled zero modes and a many-body ground state with spin
S= (n− 1)/2. The on-surface synthesis of triangulenes has been demonstrated for n= 3,4,5,7
and the observation of a Haldane symmetry-protected topological phase has been reported in
chains of [3]triangulenes. Here, we provide a unified theory for the electronic properties of a
family of two-dimensional honeycomb lattices whose unit cell contains a pair of triangulenes with
dimensions na,nb. Combining density functional theory and tight-binding calculations, we find a
wealth of half-filled narrow bands, including a graphene-like spectrum (for na = nb = 2), spin-1
Dirac electrons (for na = 2,nb = 3), px,y-orbital physics (for na = nb = 3), as well as a gapped
system with flat valence and conduction bands (for na = nb = 4). All these results are rationalized
with a class of effective Hamiltonians acting on the subspace of the zero-energy states that
generalize the graphene honeycomb model to the case of fermions with an internal pseudospin
degree of freedom with C3 symmetry.

1. Introduction

The quest for new states of matter that do not occur
naturally in conventional materials fuels the study
of artificial quantum lattices in a variety of plat-
forms, including cold atoms [1, 2], trapped ions [3],
quantum dots [4, 5], dopants in silicon [6], function-
alized graphene bilayer [7], moiré heterostructures
[8] and adatoms [9–11]. These systems may work
as quantum simulators of both spin and fermionic
Hamiltonians, such as the Hubbard model, and are
expected to host strongly correlated electronic phases.

Here, we explore the properties of two-
dimensional (2D) artificial crystals with triangu-
lenes as building blocks. Triangulenes are open-shell
polycyclic aromatic hydrocarbons. Their low-energy
degrees of freedom are provided by electrons that
partially occupy zero-energy modes inside a large gap

of strongly covalent molecular states formed by π
atomic orbitals. In standard conditions, open-shell
molecules are very reactive and therefore not suitable
for manipulation. However, thanks to the advances
in on-surface chemical synthesis [12–14], it has been
possible to go around this problem, so that the con-
trolled fabrication of triangulenes of various sizes
[15–18], as well as triangulene dimers [19], chains
[20], rings [20, 21] and other structures [22], has
been recently demonstrated. On the other hand, the
on-surface synthesis of large-area carbon-based crys-
tals has also been established [23–25]. Therefore, the
synthesis of 2D triangulene crystals seems within
reach using state-of-the-art techniques, motivating
the present work.

Individual [n]triangulenes have a ground state
with spin S= (n− 1)/2, on account of their
strong intramolecular exchange [26, 27]. The small
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Figure 1. (a) Two variants of [2]triangulene, with A (B) sublattice-type sites colored in red (blue). The top (bottom) triangulene
has excess of red (blue) sites. (b) Centrosymmetric triangulene honeycomb lattice with a unit cell formed by a pair of
[2]triangulenes with opposite sublattice imbalance. (c) Non-centrosymmetric triangulene 2D crystal with a unit cell formed by an
A-type [2]triangulene and a B-type [3]triangulene.

spin–orbit coupling of carbon makes their magnetic
anisotropy negligible [20, 28]. The intermolecular
exchange coupling in [3]triangulene dimers has been
determined to be antiferromagnetic [19–21, 29].
Recently reported [20] experimental results show that
chains and rings of [3]triangulenes display the key
features of the Haldane phase for antiferromagnetic-
ally coupled S= 1 spins, namely a gap in the excita-
tion spectrum and the emergence of fractional spin-
1/2 edge states. Here, we study [na,nb]triangulene
2D crystals, i.e. honeycomb lattices with a unit
cell made of two triangulenes with dimensions
na,nb (see figure 1 for the cases na = nb = 2 and
na = 2,nb = 3).

The rest of this paper is organized as follows.
In section 2, we review the electronic properties of
individual [n]triangulenes. We argue that, based on
a nearest-neighbor tight-binding (TB) approxima-
tion, [na,nb]triangulene 2D crystals should have na +
nb − 2 flat bands at zero energy. In section 3, we
calculate the energy spectrum using density func-
tional theory (DFT) and we find na + nb − 2 nar-
row bands, in disagreement with the expectations
based on the nearest-neighbor TB model. We show
that adding a third neighbor hopping to the TB
model accounts for the DFT results and is essen-
tial to understand the weakly dispersive bands. In
section 4, we build a minimal TB model that includes
only the zero-energy modes of the triangulenes and
the effect of third neighbor hopping, compare it to
both DFT and full TB models, and show that it
accounts for the energy bands so obtained. These
include a graphene-like spectrum for na = nb = 2,
spin-1 Dirac electrons for na = 2,nb = 3, px,y-orbital
honeycomb physics for na = nb = 3, and a gapped
system with flat valence and conduction bands for
na = nb = 4. In section 5, we address the effect of
interactions and the spin physics in triangulene 2D
crystals. In section 6, we wrap up and present our
conclusions.

2. Electronic properties of [n]triangulenes

2.1. Spectrum and symmetries
In this section, we briefly review the electronic prop-
erties of individual [n]triangulenes. We first consider
their single-particle properties, as described with the
TB Hamiltonian, considering one orbital per site and
nearest-neighbor hopping, t. Because of the bipartite
character of the lattice, the energy spectrum must be
composed of two types of states: finite-energy states,
with electron–hole symmetry, and at least |NA −NB|
zero modes, where NA/B is the number of sites of
the A/B sublattice. In the case of [n]triangulenes (see
figure 2(a) for n= 2,3,4), |NA −NB|= n− 1 and we
find n− 1 zero modes. We can build triangulenes
with excess of either A or B sites (figure 1(a)). We
denote their zero mode wave functions by |a⟩ and |b⟩,
respectively.

The zero modes are separated from the finite-
energy states by a large energy splitting, as shown
in figure 2(a). At half filling, relevant for polycyclic
aromatic hydrocarbons at charge neutrality, the zero
modes are half-filled. Therefore, the low-energy phys-
ics of triangulene crystals are expected to be dom-
inated by the electrons occupying the zero-energy
states.

We now focus on the wave functions of the zero
modes. As we show in figure 2(b), the zero modes are
sublattice-polarized, i.e. they have a non-zero weight
exclusively in themajority sublattice [27, 30]. Because
of the degeneracy of the zero modes for n⩾ 3, their
representation is not unique. It is extremely useful to
choose |a⟩ and |b⟩ as eigenstates of the R2π/3 counter-
clockwise rotation operator:

R2π/3|a⟩= eiωa |a⟩, R2π/3|b⟩= eiωb |b⟩, (1)

where ei3ωa,b = 1. We thus have three possible values
for the exponents: ωa,b = 0,±2π/3.
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Figure 2. (a) Number of states vs. energy of [n]triangulene, for n= 2,3,4, calculated with a nearest-neighbor TB model, featuring
n− 1 zero-energy modes. (b) Representation of the zero mode wave functions: the circle size scales with the modulus, the arrows
represent the phases. For n= 3,4, the zero modes are chosen as eigenvectors of the C3 symmetry operator (see equation (1) and
table 1). The zero modes vanish at the minority sublattice, including the corner sites that link triangulenes to their neighbors.

2.2. Interactions andmagnetic properties
The n− 1 zero modes of [n]triangulenes host
n− 1 electrons. Therefore, [n]triangulenes have an
open-shell structure. Calculations carried out with
DFT [27, 31], quantum chemistry [30] and model
Hamiltonians [27, 30, 32] consistently predict that
the many-body ground state maximizes the spin of
the electrons in the zero modes, so that 2S= n− 1.
When modeled with the Hubbard model, the spin
of the ground state can be anticipated using Lieb’s
theorem [33], which states that 2S= |NA −NB|.
For [n]triangulenes, |NA −NB|= n− 1, so that
2S= n− 1. The underlying mechanism for the ferro-
magnetic intra-triangulene exchange is a molecular
version of the atomic Hund’s coupling.

2.3. Intermolecular hybridization of zero modes
Let us now consider the unit cell of a
[na,nb]triangulene crystal, i.e. a dimer made of two
triangulenes of A and B types. Separately, these trian-
gulenes would have na/b − 1 zero modes each. When
coupled together, Sutherland’s theorem [34] warrants
a minimal number of |na − nb| zero modes per unit
cell, and the same number of zero-energy (E= 0) flat
bands for the corresponding 2D crystal. Specifically,
for na = nb the theorem does not ensure the existence
of E= 0 flat bands. However, the binding sites of the
unit cell in the triangulene 2D lattice belong to the
minority sublattice, whereas the zero modes are hos-
ted in themajority sublattice (figure 2(b)). Therefore,
nearest neighbor hopping does not hybridize zero modes
of adjacent triangulenes. As a consequence, t does not
lift the zero mode degeneracy in a [na,nb]triangulene
crystal, so that a nearest neighbor TB model predicts
na + nb − 2 flat bands at zero energy. We anticipate
that intermolecular hybridization of zero modes in
triangulene 2D crystals will be governed by the small
third neighbor hopping, leading to weakly dispersive
half-filled energy bands.

3. Non-magnetic energy bands: DFT vs. TB

We now discuss the energy bands of several
[na,nb]triangulene 2D crystals, calculated with two

methods: spin-unpolarized DFT and TB (see results
for na = nb = 2,3,4 in figure 3). Our DFT calcula-
tions were carried out with Quantum Espresso [35],
using the Perdew–Burke–Ernzerhof functional [36].
The edge carbon atoms were passivated with hydro-
gen. The kinetic energy cutoff considered was 30 Ry.
The charge density and potential energy cutoffs used
were 700 Ry. We employed k⃗-grids of 8× 8× 1 for
the [3,3]triangulene crystal and of 10× 10× 1 for the
[2,2] and [4,4] cases. Before the self-consistent cal-
culations, we performed successful relaxation of the
cell geometries until the pressure was below 0.5 kbar,
obtaining no significant deviations from planarity.

The spin-unpolarized DFT calculations enforce
non-magnetic solutions, so that interactions do not
break time-reversal nor sublattice symmetry. Below,
we show that the resulting low-energy bands are asso-
ciated with the triangulene zero modes and can be
accounted for by the TB calculations, as long as third
neighbor hopping is included. We start by address-
ing the DFT bands obtained for the [2,2]-, [3,3]- and
[4,4]triangulene crystals (figures 3(d)–(f)). Our res-
ults are in agreement with previous work by the group
of Feng Liu [37, 38] for the [2,2] and [4,4] cases.

The overall picture of the spin-restricted DFT
bands for [n,n]triangulenes, with n= 2,3,4, is the
following. A set of 2(n− 1)weakly dispersive bands is
located around the Fermi energy, well separated from
higher/lower energy bands. Given that the number of
zero modes per unit cell is 2(n− 1), it can be expec-
ted that the wave functions of these bands are mostly
made of zeromodes. In the case of n= 2 (figure 3(d)),
the bands are isomorphic to the π bands of graphene,
but with a smaller bandwidth of 605meV. The n= 3
bands, shown in figure 3(e), feature two Dirac cones
and, in addition, two flat bands at the maximum
and minimum of the graphene-like Dirac bands. We
note that these bands are identical to those obtained
in the px,y-orbital honeycomb model [39, 40]. The
spectrum of the [4,4]triangulene crystal (figure 3(f),
see also a zoom in figure 5(g)) features a small gap
of 0.17 eV, with flat valence/conduction bands and a
pair of graphene-like bands whose top (bottom) is
degenerate with the valence (conduction) flat band at

3
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Figure 3. (a)–(c) Atomic structure of (a) [2,2]-, (b) [3,3]- and (c) [4,4]triangulene crystals. Red and blue colors denote the two
sublattices. (d)–(f) Spin-unpolarized DFT bands of (d) [2,2]-, (e) [3,3]- and (f) [4,4]triangulene crystals. (g)–(i) Energy bands
obtained with the TB model, including third neighbor hopping t3 = 0.1t, for (g) [2,2]-, (h) [3,3]- and (i) [4,4]triangulene
crystals. The standard value for first neighbor hopping for graphene is t= 2.7 eV.

the Γ point. We note that the same set of bands was
found in crystalline networks where topological zero-
energy states are hosted at the junctions of a network
of graphene nanoribbons [41].

The appearance of non-dispersive bands at finite
energy is quite peculiar, as non-bonding states in
bipartite lattices usually correspond to sublattice-
polarized modes with E= 0. Here, the sublattice-
polarized E= 0 states seem to hybridize, forming
pairs of bonding–antibonding states that lead to
electron–hole symmetric bands, some of which being
flat bands with finite energy. The origin of the pecu-
liar dispersion of these low-energy bands, expected to
be all flat at E= 0 in the nearest-neighbor TB model,
is addressed in the next section.

The dispersion of the low-energy bands obtained
withDFT suggests that the zeromodes of adjacent tri-
angulenes do hybridize, so that the nearest neighbor
TB approximation fails. Second neighbor hopping
does not couple states hosted at different sublat-
tices, including the zero modes of adjacent triangu-
lenes, and leads to bands that break electron–hole
symmetry. Therefore, it is natural to consider a

third neighbor hopping, t3. Our calculations with
t3 = 0.1t show energy bands in qualitative agree-
ment with those of DFT for the [2,2]-, [3,3]- and
[4,4]triangulene crystals (figures 3(g)–(i)). If we take
t3 = 0 (not shown), the na + nb − 2 low-energy bands
become flat, with E= 0. Thus, we conclude that third
neighbor hopping accounts for the observed disper-
sion and is the key energy scale that controls inter-
triangulene hybridization.

4. Effective low-energy theory

The TB results of the previous section illustrate
that [na,nb]triangulene 2D crystals provide a plat-
form to generate a wide class of non-trivial energy
bands, including graphene-likeDirac dispersion, px,y-
orbital honeycomb physics and a gapped system
with flat valence and conduction bands. The emer-
gence of these peculiar results calls for a deeper
comprehension.

In order to ascertain the ultimate origin of
the peculiar properties of the low-energy bands
of [na,nb]triangulenes, we define an effective

4



2D Mater. 10 (2023) 015015 R Ortiz et al

Figure 4. Scheme illustrating how third neighbor hopping
t3 leads to hybridization of zero-energy states in adjacent
triangulenes via three pairs of atomic dimers. The zero
mode wave functions at atomic sites labeled with the same
numerals (j= 1,2) but with different number of primes are
related by C3 symmetry.

Hamiltonian in terms of the na + nb − 2 zero modes
in the unit cell, calculated with the TB model with
t3 = 0.8 These zero modes are split into two groups
consisting of na − 1 |a⟩ and nb − 1 |b⟩ states localized
in the A and B sublattices of adjacent triangulenes,
respectively. Third neighbor hopping connects |a⟩
and |b⟩ at three pairs of atomic dimers at the corners
of the triangulenes (figure 4). On the other hand,
t3 does not couple zero modes of the same trian-
gulene, as they belong to the same sublattice. The
resulting effective model defines a honeycomb lat-
tice with na + nb − 2 states per unit cell, whose Bloch
Hamiltonian can be written as:

Heff(⃗k) =

(
0[a] τ (⃗k)

τ †(⃗k) 0[b]

)
, (2)

where k⃗ denotes the 2D crystal momentum, 0[a/b] are
square matrices of dimension na/b − 1 with all entries
equal to zero, and τ is an (na − 1)× (nb − 1) rectan-
gular matrix with entries given by:

τab(⃗k) =
∑

m=0,1,2

ei⃗k·⃗Rm t(m)
ab . (3)

In the previous expression, R⃗0 = (0,0) is the null vec-
tor associated to the intracell hopping terms, and R⃗1,2

are the primitive vectors that define the hexagonal lat-
tice of [na,nb]triangulenes:

R⃗1,2 = (na + nb + 1)⃗a1,2, (4)

where a⃗1,2 are the primitive vectors of the graphene

hexagonal lattice. The (⃗k-independent) hopping

matrix elements t(m)
ab are defined below. As usual, the

hopping between A and B states of the honeycomb
lattice has one intracell (them= 0 term of the sum in

8 See [42] for a similar derivation applied to a toy model for one-
dimensional crystals of [3]triangulenes.

Table 1. From left to right: size of the triangulene, labels for the
corresponding n− 1 zero-energy modes, phase that each zero
mode wave function acquires upon the action of the R2π/3
operator (see equation (1) and figure 2(b)), and values of each
zero mode wave function at the binding sites j= 1,2. The label z
stands for either a or b.

n zero mode ωz z(1) z(2)

2 z0 0 1√
6

−1√
6

3 z+ + 2π
3

1√
11

−1√
11

3 z− − 2π
3

1√
11

−1√
11

4 z0 0 1√
12

−1√
12

4 z+ + 2π
3

1√
21

−1√
21

4 z− − 2π
3

1√
21

−1√
21

equation (3)) and two intercell (them= 1,2 terms of
the sum in equation (3)) contributions.

The intracell hopping matrix elements can be
expressed as:

t(0)ab = t3
∑
j=1,2

a( j)b∗( j), (5)

where a( j) = ⟨j|a⟩ and b( j) = ⟨j|b⟩ denote the com-
ponents of the zeromodewave functions |a⟩ and |b⟩ at
the atomic sites j= 1,2, following the labeling depic-
ted in figure 4. Importantly, we can always impose
that a(1) = b(1) ∈ R, from which it follows that
a(2) = b(2) ∈ R. In the following, we shall assume
this gauge fixing. For that reason, wewill use the nota-
tion z for cases where we want to label either a or b.

Using the point group symmetry of the triangu-
lenes, the intercell hopping matrix elements can be
expressed in terms of the intracell ones. Given the val-
ues of z(1) and z(2), together with the phases ωz that
each zero mode wave function acquires when apply-
ing the R2π/3 operator (see table 1 for n= 2,3,4), the
remaining values of z( j ′) and z( j ′ ′) can be determ-
ined by making use of the C3 symmetry. Specifically,
we use that z( j) = eiωzz( j ′) = e−iωzz( j ′ ′) to obtain:

t(1)ab = t3
∑

j ′=1 ′,2 ′

a( j ′)b∗( j ′) = ei(ωb−ωa)t(0)ab (6)

and

t(2)ab = t3
∑

j ′ ′=1 ′ ′,2 ′ ′

a( j ′ ′)b∗( j ′ ′) = ei(ωa−ωb)t(0)ab , (7)

which fully clarifies how to build the effective
Hamiltonian of equation (2).

The effective Hamiltonian described above is the
minimal TB model that is expected to capture the
na + nb − 2 narrowbands of [na,nb]triangulenes. This
minimal model describes a honeycomb lattice whose
unit cell has na − 1 and nb − 1 states in the A and B
sublattice-type sites, respectively. We can think of the
different states of the same sublattice as a pseudospin
degree of freedom with C3 symmetry, thereby gen-
eralizing the honeycomb model of graphene to the

5
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Figure 5. Energy bands of [n,n]triangulene crystals, for (a)–(c) n= 2, (d)–(f) n= 3 and (g)–(i) n= 4, obtained with (a), (d),
(g) spin-unpolarized DFT, (b), (e), (g) the full TB model and (c), (f), (i) the minimal TB model defined by equation (2). The TB
results were obtained with t3 = 0.1t.

case of fermions with an additional internal structure.
The magnitude of the effective hopping is controlled
by the weight of the zero modes at the intracell
binding sites j= 1,2. The intercell hopping matrix
elements depend on the phase differences ωa −ωb.
When nonzero, we can interpret the phases ωz as
Peierls phases associated to a pseudospin-dependent
magnetic field. Importantly, the model must still be
time-reversal invariant.

In figures 5(c), (f) and (i), we show the energy
bands obtained with the minimal TB model for
na = nb = 2,3,4, taking t3 = 0.1t. We find an excel-
lent agreement with the full TB model (figures 5(b),
(e), and (h)), which in turn agrees with the spin-
unpolarized DFT results (figures 5(a), (d), and (g)).
Below, we take an in-depth look into the effect-
ive Hamiltonian of equation (2), which allows
us to have a better understanding of the band
dispersion for na = nb = 2,3,4, as well as for
the non-centrosymmetric case na = 2,nb = 3 (not
addressed yet).

4.1. [2,2]triangulene crystal
The minimal Hamiltonian for the [2,2]triangulene
crystal is a 2× 2 matrix that is isomorphic to the TB
model for a monoatomic honeycomb lattice with one
orbital per site and nearest neighbor hopping. The
reason for that is the fact that there is only one zero
mode per triangulene, with ωz = 0. Using that z(1) =

−z(2) = 1√
6
(see table 1), we get t(0)ab = t(1)ab = t(2)ab =

t3/3. Thus, we obtain the following effective Bloch
Hamiltonian:

H[2,2]
eff (ϕ1,ϕ2) =

t3
3

(
0 f(ϕ1,ϕ2)

f∗(ϕ1,ϕ2) 0

)
, (8)

with

f(ϕ1,ϕ2) = 1+ eiϕ1 + eiϕ2 (9)

and

ϕ1,2 = k⃗ · R⃗1,2. (10)

6
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Figure 6. (a) Atomic structure of the [2,3]triangulene
crystal. (b) Energy bands of the [2,3]triangulene crystal,
obtained with the full TB model, using t3 = 0.1t. (c) Zoom
of panel (b) onto the three lowest-energy bands. (d) Energy
bands of the [2,3]triangulene crystal, obtained with the
minimal TB model, taking t3 = 0.1t.

The corresponding energy bands are given by:

ϵ
[2,2]
± (ϕ1,ϕ2)

=± t3
3
|f(ϕ1,ϕ2)|

=± t3
3

√
3+ 2 cosϕ1 + 2 cosϕ2 + 2 cos(ϕ1 −ϕ2).

(11)

The Hamiltonian obtained in equation (8) is
identical to the TB model for the pz orbitals of
graphene, but with an effective hopping given by:

t[2,2]eff =
t3
3
, (12)

which leads to an energy bandwidth of 6t[2,2]eff = 2t3.
The bandwidth obtained by our DFT calculations is
around 0.6 eV, which implies t3 ≃ 0.3 eV, in line with
the values from the literature [43]. A Taylor expan-
sion of equation (8) around theK andK

′
points yields

Dirac cones with Fermi velocity ℏv[2,2]F = 5
2 t3d, where

d denotes the carbon–carbon distance.
In short, we see that third neighbor hopping in

[2,2]triangulene crystals produces an intermolecu-
lar hybridization of the zero modes that leads to the
formation of an artificial graphene lattice, with a nar-
rower bandwidth governed by t3, instead of by the
nearest neighbor hopping.

4.2. [2,3]triangulene crystal
The [2,3]triangulene (see figure 6(a)) is the smallest
non-centrosymmetric triangulene 2D crystal. It has a
sublattice imbalance of |NA −NB|= 1 that accounts
for the presence of one flat band at E= 0. Within the
minimal model, it has three states per unit cell. Using

the results of table 1, the effective Bloch Hamiltonian
can be written as:

H[2,3]
eff (ϕ1,ϕ2)

=


0 F [2,3]

a0,b+
(ϕ1,ϕ2) F [2,3]

a0,b−
(ϕ1,ϕ2)

F [2,3]
a0,b+

∗
(ϕ1,ϕ2) 0 0

F [2,3]
a0,b−

∗
(ϕ1,ϕ2) 0 0

 ,

(13)

with

F [2,3]
a0,b±

(ϕ1,ϕ2) =
2 t3√
6× 11

f(ϕ1 ± θ,ϕ2 ∓ θ) (14)

and θ = 2π/3. The corresponding eigenvalues read
as:

ϵ
[2,3]
0 (ϕ1,ϕ2) = 0 (15)

and

ϵ
[2,3]
± (ϕ1,ϕ2)

=±
√∣∣∣F [2,3]

a0,b+
(ϕ1,ϕ2)

∣∣∣2 + ∣∣∣F [2,3]
a0,b−

(ϕ1,ϕ2)
∣∣∣2

=± 2 t3√
33

√
3− cosϕ1 − cosϕ2 − cos(ϕ1 −ϕ2).

(16)

In figure 6(d), we plot these energy bands, which are
verified to yield an excellent agreement with the low-
energy bands of the full TB model (figures 6(b) and
(c)).

At theΓ point, we have ϕ1 = ϕ2 = 0 and therefore

F [2,3]
a0,b±

(0,0) = 0, which accounts for the triple degen-
eracy of the bands at that point. A Taylor expansion of
equation (13) around Γ leads to the following expres-
sion for the dispersive bands:

ϵ
[2,3]
± (⃗k)≃±6

√
3

11
t3d|⃗k|, (17)

that accounts for the single Dirac cone. The corres-

ponding Fermi velocity, ℏv[2,3]F = 6
√

3
11 t3d, is larger

than that obtained in the [2,2]triangulene crystal. It
must also be noted that, in the neighborhood of Γ,
the minimal Hamiltonian can be mapped into a spin-
1 Dirac model [44].

4.3. [3,3]triangulene crystal
For na = nb = 3, there are two zero modes per tri-
angulene, that we label as |a±⟩ and |b±⟩. The pairs
of zero modes |z+⟩ and |z−⟩ can be distinguished
by the following property: R2π/3|z±⟩= e±i2 π/3|z±⟩.
Thus, we can think of the phases ωz =±2π/3 as a
pseudospin degree of freedom.

Using theminimalmodel, the 2× 2 hoppingmat-
rix of the effective Bloch Hamiltonian reads as:

τ [3,3](ϕ1,ϕ2) =

(
F [3,3]

a+,b+
(ϕ1,ϕ2) F [3,3]

a+,b−
(ϕ1,ϕ2)

F [3,3]
a−,b+

(ϕ1,ϕ2) F [3,3]
a−,b−

(ϕ1,ϕ2)

)
,

(18)
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where

F [3,3]
a+,b+

(ϕ1,ϕ2) = F [3,3]
a−,b−

(ϕ1,ϕ2) =
2t3
11

f(ϕ1,ϕ2),

(19)

F [3,3]
a+,b−

(ϕ1,ϕ2) =
2t3
11

f(ϕ1 + θ,ϕ2 − θ) (20)

and

F [3,3]
a−,b+

(ϕ1,ϕ2) =
2t3
11

f(ϕ1 − θ,ϕ2 + θ). (21)

Thus, we see that the pseudospin conserving terms
lead to the same type of matrix elements than in the
conventional honeycomb graphene model, whereas
the pseudospin flip terms contain additional θ = 2π/3
phases.

Diagonalizing the minimal Hamiltonian, we
obtain

ϵ
[3,3]
1,± (ϕ1,ϕ2) =±3 t[3,3]eff , (22)

that accounts for the flat bands at finite energy, and

ϵ
[3,3]
2,± (ϕ1,ϕ2) =±t[3,3]eff |f(ϕ1,ϕ2)|, (23)

that accounts for the graphene-like bands, with

an effective hopping t[3,3]eff = 2 t3/11. The dispersive
graphene-like bands feature Dirac cones at the K and
K

′
points (ϕ1 =−ϕ2 =±2 π/3), with Fermi velocity

ℏv[3,3]F = 21
11 t3d, which is smaller than those obtained

for the [2,2] and [2,3] cases.
The emergence of flat bands at finite energy is

remarkable. These bands are associated to states that
are localized around any given hexagonal ring in
the honeycomb lattice [39–41]. Every unit cell of
the [3,3]triangulene crystal must contribute with one
state to each of the two flat bands. Thus, this makes
half a state per triangulene and band. Every triangu-
lene participates in three hexagonal rings in a hon-
eycomb lattice. Therefore, every triangulene contrib-
utes with 1/6 of state per band to a given hexagonal
ring. Thus, the six triangulenes that form a ring
give rise to one localized state, plus its electron–
hole partner. Using numerical diagonalization for
finite size clusters, we have verified that, indeed, every
hexagonal ring hosts two localized stateswith energies

±3 t[3,3]eff . These states are bonding, in the sense that
both sublattices participate, and are thus different
from E= 0 flat bands, which are sublattice-polarized.

4.4. [4,4]triangulene crystal
In contrast to the previous triangulene 2D crys-
tals, the energy bands of the [4,4]triangulene fea-
ture a gap at half-filling. As in the previous cases,
the spin-unpolarized DFT bands close to E= 0 are
well described both by the full TB Hamiltonian
and by the minimal low-energy model, as shown in
figures 5(g)–(i). The three topmost valence bands,
and their conduction band electron–hole partners,

Figure 7. Zero modes of [4]triangulene represented in a
basis where they are localized at one corner each.

are identical to the bands of a Kagome lattice: a flat
valence/conduction band that is degenerate at the Γ
point with the top/bottom of graphene-like bands.
The lowest (highest) energy conduction (valence)
band is thus dispersionless, which is of particular
interest for the field of flat band physics.

Given that for the [4,4]triangulene crystal the
number of zero modes per triangulene (3) is com-
mensurate with the coordination number of the hon-
eycomb lattice (3), it is natural to associate the band-
gap to the formation of an orbital valence bond solid
(VBS). This idea is further reinforced by the fact
that a gapped band structure is also obtained for the
[7,7]triangulene crystal, which has 6 zero modes per
triangulene. In order to test this idea, and follow-
ing previous work [41], we build a basis set of zero
modes that are localized around one corner. To do so,
we take advantage of the isomorphism of the states
of a N = 3 ring TB model and the three zero modes
chosen as eigenstates of the C3 operator, |z0⟩, |z±⟩,
that for the sake of this discussion we relabel as |ω⟩
with ω = 0,± 2π

3 , respectively. In the N = 3 ring we
have:

|ω⟩= 1√
3

3∑
α=1

eiωα|cα⟩. (24)

We now invert this equation to obtain the states |cα⟩
as linear combinations of the C3 eigenstates. This res-
ults in three zero modes peaked around one corner
(see figure 7). In the basis of corner states |cα⟩, with
α= 1,2,3, the resulting inter-trianguleneHamiltoni-
ans τα across the α= 1,2,3 corners can be approxim-
ately written as:

τ1 = t̃

 1 η η
η 0 0
η 0 0

 , τ2 = t̃

 0 η 0
η 1 η
0 η 0

 ,

τ3 = t̃

 0 0 η
0 0 η
η η 1

 ,

(25)

with t̃= 0.035t, η= 0.097. The terms dropped in
these matrices are all order 10−2̃t. The dominant t̃
matrix elements correspond to face to face corner
states, whereas the ηt̃ terms correspond to hopping
from ‘second neighbour corners’. If we had η= 0,
thenwewould have a dispersionless VBS, where every
electron is paired to just one electron. The finite value
of η brings about the dispersion.

8
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Analytical expressions for the energy bands can be
obtained [41], yielding:

ϵ[4,4](ϕ1,ϕ2) =±t̃(1− 2η), ±t̃(1+ η± η |f(ϕ1,ϕ2)|) .
(26)

These analytical expressions are in very good agree-
ment with the bands computed by numerical diagon-
alization of the Hamiltonian without dropping small
terms in the τα matrices above. We have also verified
that the states in the flat bands are also ring states, very
much like those of the [3,3]triangulene crystal.

4.5. Overall picture of the single-particle states
The low-energy bands of [na,nb]triangulene crystals
are remarkable for several reasons. First, they only
disperse because of a third neighbor hopping, that
would normally play a residual role, yet it is dominant
here. Second, they feature flat bands at finite energy,
which are interesting on their own right. Third, they
provide a generalization of the honeycombTBmodel,
with a single orbital per site, to a more general class of
honeycomb models where fermions have an internal
pseudospin degree of freedom.

At this point, we can draw an analogy between this
pseudospin degree of freedom and the orbital angu-
lar momentum of atoms, ℓ. For atoms, the orbital
degeneracies are given by 2ℓ+ 1, with ℓ= 0,1,2, . . .,
and their symmetry properties are governed by the
spherical harmonics. For [n]triangulenes, the orbital
degeneracies are given by n− 1, with n= 2,3,4, . . .,
and their symmetry properties are determined by the
discrete R2π/3 operator. Very much like the angu-
lar momentum wave function of the valence elec-
trons in atoms shapes their electronic properties,
the pseudospin of the fermions in [na,nb]triangulene
crystals dictates the resulting band structures. In par-
ticular, the [2,2] case leads to artificial graphene,
[2,3] to the S= 1 Dirac Hamiltonian, and [3,3]
to the px,y-orbital honeycomb model, all of which
featuring Dirac cones at the Fermi energy. The
[4,4]triangulene, in contrast, is a band insulator, with
flat valence and conduction bands. It must be noted
that, even though we have been always considering
triangulene 2D crystals at half-filling, other options
could be possible if carriers are injected into them,
for instance via the application of a gate voltage or
through chemical doping [45].

Finally, we note that even though the dispersive
low-energy bands are narrow, interactions can turn
these systems intoMott insulators at half-filling, as we
discuss in the next section.

5. Effect of interactions

5.1. General considerations
Wenowdiscuss qualitatively the effect of interactions.
Unless otherwise stated, we focus on the half filling
case. At the single [n]triangulene level, interactions

have a huge impact on the electrons at the zero
modes, determining the strong intramolecular fer-
romagnetic exchange that leads to 2S= n− 1. In
the case of [na,nb]triangulenes, Coulomb repulsion
competes with the inter-triangulene hybridization.
We quantify this competition in terms of the ratio
between two energy scales, that we can define for each
zero mode. On the one hand, we have the effective
Coulomb interaction,

Ũa = U
∑
i

|a(i)|4. (27)

This effective interaction is thus given by the
atomic Hubbard U times the inverse participation
ratio (IPR). On the other hand, the average inter-
triangulene hopping energy,

Ka =
1

nb − 1

∑
b

t(0)ab , (28)

where t(0)ab is the intracell hopping, given in
equation (5), and nb − 1 is the number of zero modes
of the nb triangulene. The average of the ratio Ũa/Ka

over the a zeromodes provides a single figure ofmerit
to quantify the strength of the interactions. The ratios
depend both on the values of atomic energy scales U
and t3 and on the properties of themolecular orbitals,

t(0)ab , Ũa.
For instance, in the case of the [2,2]triangulene

crystal, with just a single zero mode per triangu-
lene, the IPR of the zero mode is 1/6, so that the

ratio yields r≡ Ũ

t(0)ab

= U/6
t3/3

= U
2t3
. For U = 1.5 t and

t3 = 0.1t, we have r≃ 7.5, clearly in the insulating side
of the metal–insulator transition predicted for r > 4.5
for the Hubbard model at half filling in the hon-
eycomb lattice [46]. In the Mott insulating regime,
with the charge fluctuations frozen, we expect the
[2,2]triangulene crystal to behave like a S= 1/2 hon-
eycomb lattice with antiferromagnetic exchange

J[2] = 4

(
t[2,2]eff

)2
Ũ

= 6× 4

9

t23
U

≃ 48meV, (29)

for t= 2.7 eV,U = 1.5 t and t3 = 0.1t. As we shall dis-
cuss in a forthcoming work [47], in addition to the
kinetic exchange, there are other contributions to the
antiferromagnetic exchange in this system.

For [n,n]triangulenes with n= 3,4,5 we find the
average of ratios Ũa/Ka to be 3.9, 2.9 and 3.1, respect-
ively, if we take typical values [19, 20] ofU = 1.5 t and
t3 = 0.1t. Thus, interactions cannot be neglected and
will very likely drive these systems into a Mott insu-
lating phase.

5.2. Spin-polarized DFT calculations for the
[3,3]triangulene crystal
We now discuss the results of our spin-polarized
DFT calculations on the [3,3]triangulene crystal.
They provide a realistic assessment of the emergence
of local moments and their exchange interactions

9
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Figure 8. (a) Energy bands and (b) magnetic moment
density, computed with spin-polarized DFT, for the
[3,3]triangulene crystal. These results indicate that
[3,3]triangulenes are Mott insulators with
antiferromagnetic order.

but can only describe broken symmetry magnetic
states, and therefore cannot account for quantumdis-
ordered spin phases that are known to occur for one-
dimensional (1D) chains of triangulene crystals [20].
The results are shown in figure 8 for the lowest energy
magnetic configuration, where the triangulenes have
local moments with opposite magnetizations. The
four lowest energy bands clearly show that a very large
gap has opened where the Dirac bands once stood.
Additionally, from the magnetic moments distribu-
tion across the molecules, shown in figure 8(b), it is
apparent that local moments are hosted by the zero
modes. We note that spin-polarized DFT results for
the [2,2]triangulene crystal obtained by Zhou and
Liu [37], also feature an antiferromagnetic insulator.
Therefore, the available spin-polarized DFT results
support the picture that [n,n]triangulenes are Mott
insulators with antiferromagnetically coupled local
moments.

From our calculations we can infer the value
of the intermolecular exchange J[3]. For that mat-
ter, we compare the energy difference between the
ferromagnetic and the antiferromagnetic solutions
obtained with DFT, with the result of a classical Heis-
enberg model. The energy difference per unit cell
is given by 6J[3]S2 = EFM − EAFM = 159.2meV. Using
S= 1 we infer J[3] = 26.5meV. This analysis, that
overlooks additional contributions such as biquad-
ratic exchange, is to be compared with the result of
J= 14meV, recently inferred for the S= 1 triangulene
dimer, in the same approximation [19].

5.3. Spin phases in honeycomb crystals
We now briefly discuss the type of interacting ground
states that can be expected to arise for the triangu-
lene crystals at half filling. In the case of [2,2]-crystals,
the relevant reference are the quantum Monte Carlo
calculations for the Hubbard model in the half filling
case. These show a transition to a Neel ordered Mott
insulating phase for U > 4.2 t. The existence of a
spin liquid phase has been studied extensively using
Heisenberg spin models [48]. In the case of [2,3] at
half filling, Lieb theorem [33] ensures a ground state

with S= 1/2 per unit cell. According to Lieb theorem
the non-centrosymmetryc crystals [na,nb] will have a
spin S= |na − nb|/2 per unit cell, and will be either
ferromagnetic or ferrimagnetic.

The S= 1 Heisenberg model in the honey-
comb lattice has also been studied using dens-
ity matrix renormalization group calculations in
finite size clusters [49]. These calculations predict
a Neel phase with long-range order, unless second-
neighbor antiferromagnetic interactions, that pro-
mote frustration, are significant. For bipartite lattices,
second-neighbor exchange coupling would be ferro-
magnetic. Therefore, aNeel phase is likely to occur for
the [3,3]triangulene crystal at half filling.

In the case of the [4,4]triangulene crystal, the rel-
evant spin model is the S= 3/2 Heisenberg Hamilto-
nian in the honeycomb lattice with antiferromagnetic
interactions. Interestingly, this Hamiltonian is not
far from the Affleck–Kennedy–Lieb–Tasaki (AKLT)
model for S= 3/2, that contains Heisenberg (bilin-
ear) terms as well as biquadratic and bicubic spin
couplings [50]. Importantly, the AKLT model can be
solved exactly and features a spin VBS. The ground
state of the AKLT model is a universal resource for
measurement based quantum computing (MBQC)
[51]. Importantly, the AKLT model has a gap in the
excitation spectrum [52–54], so that cooling down a
system described with the AKLTmodel at low enough
temperatures would be enough to prepare a universal
resource for MBQC.

The AKLT point is a singular point in a class of
models with bilinear and biquadratic couplings, and
even bicubic [50] terms in the honeycomb case. In
one dimension, the VBS phase is robust in a region of
parameters containing both AKLT and the pure Heis-
enberg limit. For the 2D honeycomb AKLT model,
finite-size diagonalization of the spin model [55]
found a VBS to Neel transition when AKLT is linearly
transformed into a Heisenberg model, but the precise
location of the transition is hard to establish due to
finite-size effects. In any event, the interesting ques-
tion of whether the [4,4]triangulene crystal provides
a realization of the VBS in two dimensions remains
open. We note that the VBS phase predicted for the
S= 1 AKLT in one dimension has been observed for
[3]triangulene chains [20].

Deviations from half-filling, introducing carriers
in the Mott insulating phases, will very likely bring
very interesting electronic phases, as it happens in
the case of cuprates and in the case of twisted bilayer
graphene [56]. This matter deserves further study.

6. Summary and conclusions

We have shown that graphene triangulenes are ideal
building blocks for bottom–up design of carbon-
based 2D honeycomb crystals with both narrow
and flat bands at the Fermi energy. Our study per-
mits to set the rules for the rational design of the
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bands, including the number of narrow bands and the
presence of flat bands either at the Fermi energy or
nearby. The design principles for honeycomb crystals
with a unit cell made of two triangulenes, of dimen-
sions na,nb (see figure 1), are:

(a) Isolated [n]triangulenes host n− 1 zero modes
that are localized in one sublattice (either a or b,
depending on the orientation).

(b) The zero modes vanish identically at the inter-
triangulene binding sites. As a result, inter-
molecular hybridization is governed by third
neighbor hopping t3.

(c) Centrosymmetric [n,n]triangulene crystals have
2(n− 1) narrow bands. For n⩾ 3 they always
feature pairs of electron–hole conjugate low-
energy flat bands, corresponding to states loc-
alized in supramolecular hexagonal rings. These
flat bands are very different from E= 0 bands, as
they are not sublattice polarized and they feature
intermolecular hybridization.

(d) Non centrosymmetric [na,nb]triangulene crys-
tals, with na ̸= nb, feature |na − nb| flat bands at
E= 0, because of the bipartite character of the
lattice [30, 34].

The results above are validated comparing spin-
unpolarized DFT calculations with TB Hamiltonians
at two levels: a full-lattice model that includes first
and third neighbor hopping and aminimal TBmodel
where only the zero modes of the triangulenes are
included. Using the latter approach we are able to
derive analytical expressions for the energy bands of
the [2,2]-, [2,3]-, [3,3]- and [4,4]triangulene crystals.

We have also addressed the effect of electron–
electron interactions on these crystals. Both analyt-
ical estimates of the relevant energy scales and spin-
polarized DFT calculations permit to anticipate that
interactions will dominate the electronic properties
of these crystals. At half-filling, these crystals are
expected to be Mott insulators, with their low energy
physics governed by the spin degrees of freedom.
Application of Lieb theorem [33], valid for the Hub-
bard model in bipartite lattices at half filling, per-
mits to anticipate that compensated ([n,n]) trian-
gulene crystals have a ground state with S= 0, and
therefore antiferromagnetic intermolecular exchange.
We have estimated the magnitude of this super-
exchange for the [2,2] and [3,3] crystals, and found
very large values, in the range of tens of meV. For
non-centrosymmetric [na,nb] crystals with na ̸= nb,
Lieb theorem predicts that the ground state will have
S= |na − nb|/2 per unit cell. Thus, these crystals will
be ferromagnets or ferrimagnets.

Doping these Mott insulators away from half-
filling seems an almost certain recipe to discover
non-trivial correlated electronic phases. We hope
our work, together with recent work showing the
great interest of triangulene 1D structures [20], will

motivate experimental work to figure out synthetic
routes that permit to create triangulene 2D crystals
and the exploration of their electronic properties in
the lab.
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