Range Spectral Filtering in SAR Interferometry: Methods and Limitations

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129674
Información del item - Informació de l'item - Item information
Título: Range Spectral Filtering in SAR Interferometry: Methods and Limitations
Autor/es: Mestre-Quereda, Alejandro | Lopez-Sanchez, Juan M. | Mallorquí Franquet, Jordi J.
Grupo/s de investigación o GITE: Señales, Sistemas y Telecomunicación
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Universitario de Investigación Informática
Palabras clave: SAR interferometry | Range filtering | Spectral shift
Fecha de publicación: 10-nov-2022
Editor: MDPI
Cita bibliográfica: Mestre-Quereda A, Lopez-Sanchez JM, Mallorqui JJ. Range Spectral Filtering in SAR Interferometry: Methods and Limitations. Sensors. 2022; 22(22):8696. https://doi.org/10.3390/s22228696
Resumen: A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrelation must be compensated by a specific filtering technique known as range filtering, the goal of which is to estimate this spectral displacement and retain only the common parts of the images’ spectra, reducing the noise and improving the quality of the interferograms. Multiple range filters have been proposed in the literature. The most widely used methods are an adaptive filter approach, which estimates the spectral shift directly from the data; a method based on orbital information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which consider both orbital information and auxiliary topographic data. Their advantages and limitations are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its goal is to enhance the filtering process by automatically adapting the filter to all types of surface variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy is improved with the new method including the steepest areas and vegetation-covered regions in which the performance of the original methods is limited.
Patrocinador/es: This work was supported by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (ERFD) under Projects PID2020-117303GB-C21 and PID2020-117303-C22.
URI: http://hdl.handle.net/10045/129674
ISSN: 1424-8220
DOI: 10.3390/s22228696
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/s22228696
Aparece en las colecciones:INV - SST - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMestre-Quereda_etal_2022_Sensors.pdf15,97 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons