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Abstract: A geometrical decorrelation constitutes one of the sources of noise present in Synthetic
Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two
images used to form the interferograms, which cause a spectral (frequency) shift between them. A
geometrical decorrelation must be compensated by a specific filtering technique known as range
filtering, the goal of which is to estimate this spectral displacement and retain only the common parts
of the images’ spectra, reducing the noise and improving the quality of the interferograms. Multiple
range filters have been proposed in the literature. The most widely used methods are an adaptive
filter approach, which estimates the spectral shift directly from the data; a method based on orbital
information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which
consider both orbital information and auxiliary topographic data. Their advantages and limitations
are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its
goal is to enhance the filtering process by automatically adapting the filter to all types of surface
variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous
area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy
is improved with the new method including the steepest areas and vegetation-covered regions in
which the performance of the original methods is limited.

Keywords: SAR interferometry; range filtering; spectral shift

1. Introduction

Synthetic Aperture Radar (SAR) interferometry (InSAR) has been established as a
powerful remote sensing technique for mapping the Earth’s surface. InSAR applications in-
clude the generation of highly accurate topographic models, estimation of land subsidence,
and analysis and monitoring of seismic deformations or volcanic activities [1].

Interferometric methods exploit the phase information of interferograms, which are
formed by combining two coregistered SAR images from the same area. Unfortunately,
SAR interferograms are affected by different decorrelation sources (i.e., noise) that degrade
the quality of the final products [2]. They are briefly introduced here for the sake of
completeness. A miss-registration decorrelation is caused by errors in the coregistration of the
two SAR images. It can be avoided by an accurate registration at the sub-pixel level, so it
is usually negligible. An SNR (signal-to-noise ratio) decorrelation is induced by the thermal
noise present in the electronic systems located in the SAR instrument. It is noticeable in
areas with low backscatter for which the SNR is low. A volume decorrelation comes from
the presence of scattering elements at different heights inside the SAR resolution cell,
such as in the presence of a vegetation volume (e.g., in forests). A temporal decorrelation
is due to changes in the physical and geometrical properties of the imaged areas, which
are produced from the acquisition of the two SAR images. Note that both volume and
temporal decorrelations cannot be specifically compensated. A Doppler decorrelation is due
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to variations in the antenna direction between the two acquisitions, which cause a different
frequency shift in the azimuth spectrum (Doppler Centroid). This source of decorrelation
can be appropriately compensated by using a process known as azimuth filtering, the goal
of which is to remove the non-overlapping frequency bands in the azimuth dimension [1,3].
The last source of decorrelation, which constitutes the focus of this work, is the geometrical
(or baseline) decorrelation. It is caused by the InSAR acquisition geometry, that is, two SAR
acquisitions obtained from slightly different positions. This difference in the incidence
angles causes a frequency shift between the range spectra of the two images. When forming
the interferogram, only the common band contributes to the interferometric phase, whereas
the rest only contribute noise. This frequency shift depends not only on the satellite look
angle difference but also on the local terrain slope [4].

This has led to the conception of range-filtering strategies in frequency domains,
which first, have to accurately estimate the spectral shift and second, properly remove
the non-common band of the spectra while preserving the useful (common) part. The
filtering step implies a degradation of the spatial resolution along the range. Without this
range filtering, the coherence, and hence the global quality of the interferogram, would
decrease proportionally to the perpendicular baseline (or equivalently to the local incidence
angle difference). The suppression of a baseline decorrelation is, therefore, important for
improving the quality of products derived directly from the interferometric phase (e.g.,
surface deformation). Moreover, there are techniques that exploit the coherence magnitude
as an input feature for the retrieval of biophysical variables. A typical example is the
estimation of vegetation height based on considering the input coherence as a direct mea-
sure of the volume decorrelation [5–8]. These techniques assume that the input coherence
depends only on the volume decorrelation and is free from any other decorrelation sources
(including baseline decorrelation). Therefore, the objective of range filtering is restricted
not only to increase the coherence for obtaining a better phase quality but also to estimate
the coherence correctly (i.e., free from other decorrelation sources).

This paper is organized as follows. First, Section 2.1 analyzes the key aspects of
range filtering for InSAR. The frequency-domain explanation of interferometry is briefly
introduced to justify the need for range filtering. Then, the different range filters conceived
in the past are explained in Sections 2.2, 2.3.1 and 2.3.2, whereas Section 2.3.3 presents
the proposed method. The good performance of the new method compared with those
of the classical methods is evaluated in Section 3, highlighting both the advantages and
limitations of each one.

2. Theoretical Background and Methods
2.1. Generalities

Range filtering is usually carried out right after images’ coregistration [9,10] and is
regarded as a pre-processing step because it is applied before interferogram formation. The
filtering addresses the inherent loss of coherence induced by the difference between the
incidence angles of master and slave images that form the interferogram [4,11]. Larger
baselines result in higher decorrelation levels to the extent that there is a limit, known as
a critical baseline [3], that leads to fully decorrelated interferograms. Its expression can be
geometrically derived from the system parameters as

B⊥,crit =
BWλ tan(θ − α)

c
, (1)

where BW is the range bandwidth, λ is the sensor wavelength, θ is the incidence angle,
α is the local terrain slope, c is the speed of light, and R is the distance from the satellite
position to the ground.

The most rigorous explanation of spatial decorrelation can be conducted in the spectral
domain. As a consequence of the slightly different positions of the sensor when the two
images were acquired, each image samples a different part of the ground reflectivity
spectrum. The difference is known as the wavenumber shift, as represented in Figure 1.
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Figure 1. Illustration of the wavenumber shift principle.

For filtering purposes, it is worth expressing this wavenumber shift as an equivalent
frequency shift ∆ f as a function of the acquisition parameters [4].

∆ f =
f0∆θ

tan(θ1 − α)
, (2)

where f0 is the carrier frequency, θ1 and θ2 are the look angles of the reference (master)
image and the slave image, respectively, ∆θ = θ1− θ2 is the local incidence angle difference,
and α is the local terrain slope. Moreover, the angular separation ∆θ can be approximated by

∆θ ≈ B⊥
R

, (3)

where B⊥ is the perpendicular baseline and R the range, so the frequency shift can be
expressed as

∆ f ≈ f0B⊥
R tan(θ1 − α)

=
cB⊥

λR tan(θ1 − α)
. (4)

The amount of spectral shift provides an indication of the degree of decorrelation
between both images. In this regard, the perpendicular baseline that produces a frequency
shift ∆ f equal to the range bandwidth is the critical baseline. Any interferogram obtained
from image pairs with baselines larger than the critical baseline will be fully decorrelated
since the images’ spectra would be completely disjoint (see Figure 1). For smaller baselines,
and as illustrated in Figure 2, only the common band contributes constructively to the inter-
ferogram, whereas the non-common band just contributes noise. Note that the measured
slant-range spectrum only depends on the transmitted bandwidth and sampling frequency
(and hence is common for both images), but the ground-range spectra of the images are
mapped on different slant-range spectral positions. It is clear that a proper filtering that
cancels out the non-common bands can improve the interferogram quality but at the price
of a reduction in the range resolution.
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Figure 2. Illustration of the spectral shift (ground-range (a) and slant-range domains (b)) between
two images. Only the common band (filled in gray) contains useful interferometric information.

This has led to the conception of range-filtering strategies in frequency domains, which
have to accurately remove the non-common spectral bands while preserving as much as
possible the useful (common) part. It is important to note that the spectral shift is not
uniform along the scene and that it strongly depends on the local topography.

Different spectral filtering methods have been conceived in the past. The goal of all of
them is an appropriate estimation of the frequency shift along the scene. Once the shift is
estimated, a band-pass filter is built in order to remove the non-overlapping parts of the
spectra. The main difference between the methods is how the shift is estimated. The rest of
the filtering steps are common and can be summarized as follows:

1. The spectral weighting applied to each image (during the image focusing) in order to
limit the side-lobe contributions of the strong point targets is removed to retrieve the
original flat range spectrum [12–14].

2. The spectral shift ∆ f is estimated according to each method and, once obtained, a
modified spectral weighting window is defined that eliminates the non-common parts
of the spectra.

3. This leads to a new and reduced range bandwidth BW ′ , which is a function of ∆ f

BW ′ = BW − |∆ f |, (5)

with a subsequent degradation of the spatial resolution in the range, but with an
increase in the correlation between both images.

In the following subsections, the main filtering algorithms proposed in the past are explained.

2.2. Adaptive Method

The adaptive method is widely used [1,15,16]. It has the advantage of not requiring any
external information since the spectral shift between both images is directly estimated from
them. However, a sufficient initial degree of correlation (coherence) is required between
the images since a preliminary interferogram is used to compute the local spectral displace-
ment. As a consequence, this method provides good results in already coherent areas but
performs poorly if other sources of decorrelation are present, especially when a temporal
decorrelation worsens the quality of the data. This method also shows poor performance
in vegetated areas, even in single-pass acquisitions when a volume decorrelation drives
the coherence.
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The core idea of this method relies on computing the power spectrum (range dimen-
sion) of the complex interferogram and performing a peak analysis. Prior to interferogram
formation, both the master and slave images should be oversampled by a certain factor to
increase the precision of the peak location (usually, a factor of 2 or 4 is enough). The spectral
shift is directly provided by the location of the peak. In practice, the algorithm works in
blocks, i.e., the image is divided into small overlapped patches with a given number of
pixels and lines. Although each line of the block is individually evaluated, a fixed number
of lines inside the block is averaged in order to reduce the interferogram noise. For instance,
if the block has 500 lines, 25 lines can be averaged to filter the central one. Once the peak is
located by the maximum value of the power spectrum, a pseudo-SNR is also calculated.
This signal-to-noise ratio is directly related to the ’quality’ of the peak, i.e., whether it is
clearly identified and can be considered a reliable measure of the spectral displacement or,
contrarily, it is just a local maximum value extracted from a low-quality (decorrelated) area,
hence not a reliable measure. The SNR can be computed as

SNR =
N · |Xpmax |

∑k 6=pmax |Xk|
, (6)

where N is the number of range samples in the block, k is the sample position, Xpmax is the
maximum value of the power spectrum, and |X| is the averaged spectrum in the range
dimension of the interferogram. A threshold is therefore set to determine if the estimated
spectral shift is reliable or not. Only if the SNR is above the threshold will the range be
filtered. Otherwise, the range line is not modified.

At this point, it is worth mentioning the influence of topography variations (repre-
sented by the variations in the local terrain slopes) on the filtering process. Since the peak
corresponds to the maximum value of the Fourier transform of the interferogram, it can be
regarded as the dominant frequency inside the range block. In other words, the local fre-
quency shift is equal to the fringe frequency. Accordingly, if the slopes change significantly,
the peak will inevitably widen and will not be representative of a single frequency shift.

Consequently, the filter would ideally require the slope to be perfectly constant inside
the extracted block. In this regard, the filter can be tuned so that small interferogram
patches (with fewer pixels in the range dimension) are processed when the topography
presents strong variations. In this case, even though the filter would be better adapted
to the local topography, the reduced number of samples would lead to a worse spectral
resolution and a coarser estimation of the spectral shift. However, for simplicity and to
reduce the computational cost of the method, the use of adaptive filtering window sizes is
not considered and a constant block size of 64 or 128 pixels (in a range) is employed.

2.3. DEM-Based Filtering

The rest of the methods make use of orbital information and a digital elevation model
(DEM) of the imaged area to compute the frequency shift on the basis of the observation ge-
ometry, but there are different approaches, which are detailed in the following subsections.

2.3.1. Method Based on a Constant DEM

The first method based on orbital information assumes a flat-Earth model so the local
terrain slope is kept constant at zero. Then, it employs the local perpendicular baseline
derived from the orbit state vectors to compute the spectral displacement using Equation (4),
assuming α = 0. The filtering is usually performed line by line (i.e., by extracting the whole
range for every azimuth position), where each line is, in turn, divided into smaller blocks.
Blocks of 128 or 256 pixels are recommended. Then, a single spectral shift within each
block of the interferogram is computed. In order to improve filtering performance, the
largest spectral shift is selected among all the obtained values (128 or 256 depending on the
block size).



Sensors 2022, 22, 8696 6 of 21

The zero-slope assumption leads to sub-optimal filtering performance in areas with
a steep topography since the local slope variations in the surface are not considered.
Therefore, ignoring topography constitutes the main limitation of this method.

2.3.2. Slope-Adaptive Filtering with External DEM

Since local topography plays an important role in determining the spectral shift, the
next method is based on the exploitation of an auxiliary DEM, which contains the terrain
height from which the local slopes can be estimated. We call this method slope-adaptive
filtering. In principle, it is based on the approach discussed in Section 2.3.1 but takes into
account the slopes derived from an auxiliary DEM, i.e., α is different from zero.

The inclusion of elevation information was initially proposed in [17] (see also the
companion patent [18]). Since the spectral shift is equal to the fringe frequency caused
by the topography in the space domain, the estimated frequencies can be used to filter in
the range. Although the proposed methodology has the advantage of being completely
automatic (everything is derived from the pair of images), it entails the risk of not being
accurate enough in areas with low-quality and decorrelated data, where the estimation
of frequencies is a very difficult task. Nevertheless, the slope-adaptive filtering scheme
proposed in [17] can be easily adapted to use an external DEM instead of estimating it from
the original data. In fact, an external DEM is usually considered in InSAR processing for
the coregistration [9], that is, a DEM of the imaged area is commonly available, such as
the global SRTM DEM [19]. The only step necessary here is the reprojection of the DEM
(originally in cartographic coordinates) to the SAR coordinates (slant-range/azimuth) using
the so-called inverse geocoding or back-geocoding [1] method. As a result of the process,
we obtained the height of every pixel of a SAR image.

A simple procedure for including a DEM in the filtering process relies on performing
a demodulation of the master and slave images. This can be directly achieved using the
synthetic interferogram derived from the DEM and orbits, which contains the topographic
phase contribution. Thus, both of the original SAR images S1 and S2 are demodulated
according to

S1
′ = S1 exp

(
− j

φDEM
2

)
,

S2
′ = S2 exp

(
+ j

φDEM
2

)
,

(7)

where φDEM is the topographic phase derived from the DEM. Note that half of the topo-
graphic phase contribution is used for the master image and the other half for the slave
image but with opposite signs.

The next step consists of computing the spectral displacement, which can be directly
estimated using Equation (4). As the demodulation of the images has aligned their spectra,
a low-pass filter with the proper bandwidth has to be applied to eliminate the non-common
parts. The bandwidth of the filter depends, among other factors, on the local slope and thus
changes along the scene. The simplest procedure consists of filtering the whole images or
blocks by a constant ∆ f , usually the maximum shift. The images can be low-pass filtered
employing the same symmetric filter in the frequency domain. This approach does not
fully exploit the DEM information as it over-filter areas with mild topography. The strategy
can be improved by locally applying the proper filtering on the overlapped patches. More
details regarding the implementation are provided in the next section.

Finally, the topographic phase removed in Equation (7) must be added back to the
images, leading to the range-filtered images S1 f and S2 f expressed as

S1 f = S′1 exp
(
+ j

φDEM
2

)
,

S2 f = S′2 exp
(
− j

φDEM
2

)
.

(8)

This process is shown in Figure 3.



Sensors 2022, 22, 8696 7 of 21

Bw

Δf

Master image

Master
filtered

  Slave
filtered

Slave image

exp  j
φ

DEM

2( (

exp -j
φ

DEM

2( (
Δf

Common band

exp  j
φ

DEM

2( (

exp -j
φ

DEM

2( (

Low-pass
filtering

Low-pass
filtering

Δf/2 Δf/2

Δf/2 Δf/2

-fs/2-fs/2

-fs/2 fs/2

fs/2 fs/2

Shifted spectrum

Shifted spectrum

f=0

f=0

Figure 3. Common band alignment of two images’ spectra using demodulation with a topographic
phase, followed bylow−pass filtering.

2.3.3. Multi-Scale Slope-Adaptive Filtering with External DEM

Once the different state-of-the-art range-filtering strategies have been reviewed, a
refined method is proposed in this section. The core idea consists of providing different
options to overcome the limitations of the previously explained filters using the complete
exploitation of an external DEM. It is important to state that we focus on the problems
that commonly-used filters show in areas with steep and/or varying topography or with a
strong temporal and/or volume decorrelation. Otherwise, the previous methods provide
acceptable results, as the spectral shift estimation is not influenced by these factors.

Firstly, the local terrain slopes (always in the range dimension) must be computed.
They can be easily derived since the elevation is known. Consider the SAR geometry shown
in Figure 4 over a region with a given terrain slope α. Two adjacent pixels in the slant-
range plane receive the backscattered signals from points P and P′. The height difference
∆h between both points can be directly obtained from the DEM by computing the local
derivatives in the range direction, i.e.,

∆h = h2 − h1. (9)

P
P'

S

S'

α
Δh

ΔR

Slant range

Figure 4. Local terrain slope (α) acquisition geometry between two adjacent points (S and S′).

From trigonometry, we obtain the local slope between two adjacent pixels as [20],

α = arctan

(
sin θ

∆R
∆h + cos θ

)
, (10)

where θ is the incidence angle and ∆R is the local slant range difference between the
two pixels.

Due to the presence of varying topography, the filter must be very well adapted to
the local variations in the slope. Therefore, it is necessary to segment the images into small
patches that can be filtered properly.

However, a problem arises if we have a topography like that shown in Figure 5. In this
case, the selection of the slope, and hence the estimation of the spectral displacement, is not
evident. Selecting the mean slope is not representative of the whole area, whereas selecting
the maximum value could result in too coarse a filtering (which would entail an excessive
loss of resolution), and selecting the minimum would not filter enough in some areas.
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α=0

α>0 α<0

α=0Elevation

Filtering window or patch

Figure 5. Example of filtering problem where a variety of slopes (α) is present in the same patch.

In this regard, an optimal filtering can be obtained through a subdivision of the original
window into smaller sub-blocks, resulting in a multi-scale filtering, so that the filter is always
adapted to any kind of slope. If the topography exhibits strong spatial variations, smaller
windows should provide better spectral shift estimations which, consequently, results in
better filtering performance. On the contrary, large areas with uniform slopes benefit from
larger blocks. Visually, this is represented in Figure 6. For simplicity, only four different
window sizes are shown.

128 pixels

16 pixels

32 pixels

64 pixels

Different types
of slopes

....

Figure 6. Representation of the proposed multi-scale range-filtering algorithm. An overlapping factor
of 50% is represented.

The proposed method is explained as follows. The algorithm works line by line by
extracting a number of range pixels (i.e., a range interval). Each range interval is segmented
into blocks of different sizes. Sizes of 128, 64, 32, and 16 pixels are proposed. Note that an
overlap is introduced to avoid edge effects between adjacent filtered blocks, as represented
in Figure 6. The spectral shift is obtained using geometrical parameters with Equation (4).
The maximum displacement value is always selected and the range interval is filtered
with all window sizes. Then, a quality criterion has to be established to determine which
one performed best. The interferometric coherence is selected as the quality estimator
since it provides a direct indication of the phase quality and is widely used in InSAR
applications [21]. The expression of the coherence is

γ =
1
N ∑N

n=1 S1S∗2√
1
N
(

∑N
n=1 S1S∗1

)
· 1

N
(

∑N
n=1 S2S∗2

) (N > 1), (11)

where N is the number of averaged samples (or multi-look number) and n is the sample
position/number. Usually, a square or rectangular window of a given size is used for its
estimation. The magnitude of Equation (11), which ranges between 0 and 1, is usually
employed as the estimator of the phase quality.

In this case, however, since the filtering is carried out only in the range direction,
the quality estimator corresponds to the 1D coherence where only range pixels are used.
It follows that the final values in the lines of the master and slave images are obtained
as the ones for which the coherence is maximum. Note that to avoid the effect of the
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coherence estimation bias [21], which depends on the number of samples, coherence is
always computed with a fixed window size. We also know that the effective number of
averaged pixels (looks) may vary slightly once a line is filtered with the different window
sizes. However, in practice, this difference is rather small so the 1D coherence provides
a good quality estimator. In addition, it is worth mentioning that a maximization of the
coherence in the range filter was also proposed in [22]. A general scheme of the filter is
shown in Figure 7.

Spectral filtering 
with different 
window sizes 

Extract a block 
 of master and 
slave images

Filter with

maximum

 window size

....

Selection by
maximum coherence

Filtered master
and slave lines

Filter with

minimum

 window size

.... ....

Figure 7. Block diagram of the proposed range-filtering method.

An important aspect of the proposed method is the construction of the low-pass or
band-pass filter. Two different yet equivalent strategies are proposed. On the one hand,
both the signals of the master and slave images can be demodulated using the topographic
phase according to the process described in Section 2.3.2. In this case, a symmetric low-pass
filter, which is identical for the master and the slave, is directly built according to ∆ f , i.e.,
we ’move’ the signals and we keep the same filter for both images. Note that the value of
∆ f in the frequency samples is easily obtained by

∆ fpixels = N
∆ f
fs

, (12)

where fs is the sampling rate in the range dimension, which depends on the sensor, and N
is the number of samples. This is illustrated in Figure 8. A Kaiser window with β = 2.4
(RADARSAT-2 spectral weighting) is used. Because the spectrum of each image is shifted
in opposite directions, the common band is aligned and the filter keeps the useful common
band and removes the rest of each signal.
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Figure 8. Low-pass spectral filtering after alignment of master and slave images. A spectral displace-
ment of 30 samples is assumed. (a) Spectral alignment of master and slave images. (b) Spectral shape
of the low-pass filter:a Kaiser window of 128 samples.

On the other hand, if both signals are not demodulated, a similar yet inverse procedure
is carried out, that is, we keep the signals and we adapt the filter to appropriately remove
the non-common bands. In this case, a different and non-symmetric (reversed) filter is
used for each signal. This is illustrated in Figure 9. The same Kaiser window (β = 2.4 and
128 samples) and the same spectral shift of 30 samples are used.
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(c)
Figure 9. Band-pass spectral filtering of master and slave images. A spectral displacement of
30 samples is assumed. (a) Master and slave images’ spectra. (b) Spectral shape of the band-pass
filter used for master image. (c) Spectral shape of theband−pass filter used for slave image.
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Finally, for a better understanding of the proposed method, all the steps are summa-
rized in Algorithm 1.

Algorithm 1 Proposed Multi-scale Range-Filtering Method.

1. Set maximum and minimum window sizes Wmax and Wmin, e.g., Wmax = 128 and
Wmin = 16 (pixels).

2. For all image lines:
(a) Extract master and slave segments/sub-lines according to Wmax and remove

original weighting window/filter. Note that this weighting window depends
on the SAR sensor.
i. Compute all possible frequency shifts using Equation (4) and select the

maximum value.
ii. Convert the frequency shift to pixels using Equation (12).
iii. Construct the filter/new weighting window according to the estimated

shift (in pixels). See Figures 8 and 9.
iv. Filter master and slave segments (multiplication in frequency do-

main). If the low-pass version is chosen, images must be demodulated
using Equation (7) before filtering and then modulated back using
Equation (8).

(b) Filter the same master and slave segments (still Wmax pixel size) with the
remaining window sizes (e.g., 64, 32, and 16 pixels) following steps 2(a)-i:iv.
This yields different Wmax pixel-filtered segments.

(c) Compute the local 1D coherence using Equation (11) (using only range samples)
of all the previously obtained filtered segments.

3. Set as the final master and slave filtered segments the ones providing the maximum
coherence.

3. Results

To verify the performance of all methods including the proposed one, we analyzed
the phase quality improvement achieved after range filtering a pair of images covering
the area of Mount Etna (Sicily, Italy). Specifically, the data set was composed of two
coregistered SLC (single-look complex) images acquired by RADARSAT-2 on 5 and 29 May
2008. They were acquired using Fine Quad Swath 8 (FQ8) mode, the near and far range
incidence angles of which were 26.9◦ and 28.7◦, respectively. The processed image size
was 2000 × 4000 pixels (range and azimuth, respectively) and the polarimetric channel was
HH. The main system parameters used in the filtering process are detailed in Table 1. The
intensity of the master image is represented in Figure 10a, the unfiltered interferogram
(after subtracting the flat-Earth phase component) is shown in Figure 10b, and the DEM
(SAR coordinates) providing the height data is depicted in Figure 10c.

Table 1. Processed interferometric pair characteristics.

Master date 5 May 2008

Slave date 29 May 2008

Perpendicular baseline [m] 586.547

Range bandwidth [MHz] 30.02442 MHz

DEM resolution [m] 10

Range spectral weighting Kaiser-Bessel window with β = 2.4
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(a) (b)

500 1000 1500 2000 2500 3000

Height [m]

(c)
Figure 10. Master image intensity, original interferogram, and DEM height of the processed area
(converted to slant−range coordinates). (a) Master intensity (dB). (b) Interferogram. (c) DEM height
of the processed area.

Moreover, the slant-range slopes of the test scene are represented in Figure 11. It can
be observed that this scene exhibited strong slopes throughout the whole area, especially
around Mount Etna in the central part of the image.
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Figure 11. Local slopes of the terrain inslant−range direction of the test area.

It is important to mention that all the results discussed in this section are only related
to the range-filtering process, that is, we only show the quality improvement after removing
the baseline decorrelation. Concerning the adaptive method, blocks of 128 × 500 pixels
(in range and azimuth dimensions, respectively) were progressively extracted and filtered,
35 azimuth lines in each block were averaged to compute the power spectrum, and both
images were oversampled by a factor of 2 in the range dimension. Additionally, a minimum
signal-to-noise ratio (SNR) threshold equal to 3, allowing the filter to proceed, was fixed. To
show the impact of the window size (number of samples) on this method, its performance
was also tested with a block size of 32 × 500 pixels, and 25 lines were averaged to compute
the power spectrum. Concerning the method based on a constant flat DEM, each range
line was divided into blocks of 128 pixels, and the spectral shift was estimated using
Equation (4) with a fixed (null) slope. Images were also filtered with the conventional
slope-adaptive method after including the demodulation in the topographic phase. In this
case, a global spectral displacement ∆ f was selected (the one providing the maximum
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shift). Furthermore, the proposed slope-adaptive multi-scale algorithm was applied as
a band-pass and a low-pass filter, following both strategies described in Section 2.3.3.
Nevertheless, since they both provided the same results, we only show the results obtained
with the low-pass version. Each extracted range line was filtered four times with windows
of 128, 64, 32, and 16 pixels, and an overlap of 50% between adjacent blocks was set. To
decide which block size performed better, the coherence along a line was estimated with a
kernel of 15 samples.

The overall quality improvement was assessed with the coherence histograms shown
in Figure 12. A multi-look size of 9 × 5 pixels was used for coherence computation. It can
be observed that all methods produced a clear improvement with respect to not filtering,
as all histograms were displaced towards higher values. This also proves that the original
data were significantly influenced by a geometrical decorrelation.
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Figure 12. Coherence histograms after range filtering.

The adaptive method provided higher coherence values than the method based on a
constant slope. This is because in high SNR areas, the computation of the power spectrum
was accurate enough to yield a reliable estimate of the spectral displacement. However,
it had the disadvantage of some lines not being filtered due to the reasons previously
explained in Section 2.2. This can be illustrated by three different cases as follows. In
the first case, when there was a sufficient correlation between the images, the spectral
displacement was very well determined, as shown in Figure 13, where the slope was
rather constant.
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(b)
Figure 13. Computed normalized power spectrum (a) with the adaptive method in a region with an
almost constant slope (b). A high SNR allows a clear identification of the peak (coherent area).
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Contrarily, a bad estimation of the spectral shift may come from either a flat but
decorrelated area (for instance, due to the presence of vegetation) or a correlated zone with
a strongly variant topography. These are, respectively, illustrated in Figures 14 and 15, in
which the average power spectrum is noisy and a dominant peak cannot be correctly identified.
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(b)
Figure 14. Computed normalized power spectrum (a) with the adaptive method in a region with
an almost constant slope (b) but with strong decorrelation. A low SNR does not allow a clear
identification of the peak.
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Figure 15. Computed normalized power spectrum (a) with the adaptive method in a region with a
rapidly variant topography (b). A low SNR does not allow a clear identification of the peak.

The improvement was also obvious in the resulting coherence maps of the processed
area, which are depicted in Figure 16. All methods showed an overall increase in coherence
throughout the whole area. However, a further gain was obtained when including the
multi-scale filtering.
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Figure 16. Coherence maps of the processed area after range filtering. (a) Original. (b) Adaptive
method. (c) Method based on constant slope. (d) Slope-adaptive. (e)Multi−scale slope-adaptive. The
yellow box denotes the specific region of interest analyzed in Figures 17 and 18.

This is better visualized by looking at the area indicated by a yellow square in the
original coherence map in Figure 16a. The coherences of this region of interest (RoI) are
shown in Figure 17, whereas the corresponding interferometric phases are represented in
Figure 18. It is clear that the fringes are sharper in the filtered data, so the global quality
of the phase is improved, and hence the coherence is increased to a greater extent by the
proposed method.
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(a) (b) (c)

(d) (e)
Figure 17. Coherence improvement after range filtering in a specific region of interest. (a) Original.
(b) Adaptive method. (c) Method based on constant slope. (d) Slope-adaptive. (e) Multi-scale
slope-adaptive.

(a) (b) (c)

(d) (e)
Figure 18. Phase quality improvement after range filtering in a specific region of interest. (a) Original.
(b) Adaptive method. (c) Method based on constant slope. (d) Slope-adaptive. (e) Multi-scale
slope-adaptive.

As an additional comparison, the improvement provided by each method at different
coherence intervals was evaluated. Specifically, 10 coherence intervals were selected
between 0 and 1. As shown in Figure 19, the slope-adaptive methods provided the greatest
improvement. Notably, the proposed algorithm was able to improve the coherence at all
levels, outperforming the rest of the filters. The adaptive method exhibited the worst results
in low-coherence areas, proving that this method is not able to filter areas strongly affected
by other sources of decorrelation (improvement was almost negligible for coherence values
below 0.3), for which the constant-slope orbit-based method provided some coherence
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improvements. On the contrary, the adaptive method performed better than the method
based on orbits in highly coherent areas. In fact, it provided an improvement very similar
to the slope-adaptive methods for coherence values greater than 0.8.

Figure 19. Coherence improvement for different intervals of coherence. Ten intervals were selected
within [0, 1].

Quantitative measurement of the improvement after range filtering was provided
by the so-called phase residues [23], which correspond to inconsistencies in the wrapped
phase values and represent a way to identify erroneous measurements that could produce
inaccuracies during the phase unwrapping step. Table 2 shows the remaining residues
after range filtering with each method. The improvements in both the whole area and the
specific RoI shown in Figure 18 are detailed.

Table 2. Performance analysis of the different range-filtering methods in the full processed area and
the specific RoI shown in Figure 18.

Residue Number Improvement

Full Area

Original 1,512,593 –
Adaptive method 1,370,349 9.4%

Method based on constant
slope 1,317,685 12.89%

Slope-adaptive 1,273,586 15.80%
Multi-scale slope-adaptive 1,085,287 28.24%

Specific RoI

Original 28,960 –
Adaptive method 21,524 25.67%

Method based on constant
slope 20,558 29.01%

Slope-adaptive 195,46 32.51%
Multi-scale slope-adaptive 16,998 41.30%

Concerning the complete area, it was observed that the original number of residues
was large, showing that the original phase was considerably degraded by noise. This
is in line with the improvement offered by the adaptive method, which was the worst
among all tested range filters as a result of the low-quality original interferogram (from
which every spectral displacement was computed). The slope-adaptive method exhibited
a greater improvement than the method based on orbits with a constant slope, proving
that the inclusion of the slope information positively influences the filtering performance.
The greatest improvement was clearly obtained with the proposed multi-scale strategy.
By looking at Table 2, it can be seen that the number of remaining residues was greatly
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reduced. In fact, the improvement in terms of residues was close to double that of the
slope-adaptive method, showing that the multi-scale filter completely adapts to the local
topography, so the filtering performance is greatly enhanced. A major improvement of the
proposed method was also in the specific RoI obtained. As shown in Table 2, among all the
filters, the proposed slope-adaptive multi-scale method offered the best results since it was
able to reduce the number of remaining phase residues to a greater extent, proving that the
proposed methodology maximizes the range-filtering performance.

Finally, it is interesting to visualize the window size that provided the best results (i.e.,
the best coherence) in the processed area, so that the utility of testing multiple window
sizes is justified. The color map in Figure 20 shows the window size that provided the best
filtering results in the whole processed area. By comparing Figures 11 and 20 it can be
deduced that there is a direct relationship between the filtering window size and the local
terrain slope, as highlighted in Section 2. In fact, small windows (especially of 16 pixels)
produced the best results in most parts of the scene. This was expected since the images
corresponded to a mountainous area where strong terrain slopes are present. Only flatter
areas benefited from larger window sizes (128 and 64 pixels).

128 pixels

64 pixels

32 pixels

16 pixels

A

B

Figure 20. Map of the block sizes providing the best filtering results in the processed area. Region A
is located near the summit area of Mount Etna. Region B is a flat area.

This is better illustrated when we compare the filtering window sizes and the slopes of
the two regions, labeled A and B in Figure 20. The first one (A) is located near the summit
area of Mount Etna, so strong terrain slopes are present, as shown in Figure 21a. In this case,
by looking at Figure 21b, the best filtering results were obtained with small windows (16
and 32 pixels have a clear dominance in this area). In fact, the largest window (128 pixels)
was rarely used. On the contrary, in the flat area (B) shown in Figure 22a, larger window
sizes (128 and 64 pixels) seemed to perform better since more image blocks were filtered
with these window sizes, as shown in Figure 22b.
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(b)
Figure 21. Filtering window sizes providing the best results in an area where strong terrain slopes
are present. (a) Local terrain slopes in the region of interest. (b) Window sizes providing the best
filtering results in the region of interest A.
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Figure 22. Filtering window sizes providing the best results in a flat area. (a) Local terrain slopes in
the region of interest. (b) Window sizes providing the best filtering results in the region of interest B.

4. Discussion

A revision of different, state-of-the-art range-filtering methods, has been carried out
in this work. We have shown the difficulties that these methods face, especially in areas
strongly influenced by topography.

The conventional and widely used adaptive method has an important double draw-
back, that is, besides the difficulty of accurately estimating the spectral shift in areas with
topography, the method is highly dependent on the original quality of the interferometric
phase since it cannot estimate the shift if other sources of decorrelation are present. In other
words, the filtering may be either inaccurate or unfeasible. However, it has the advantage
of not requiring any external data. Concerning the method based on a constant DEM (i.e., a
constant terrain slope) and satellite orbits, it is clearly limited if strong topographic varia-
tions are present because they are not taken into account. As a consequence, an inaccurate
estimation of the spectral shift is computed and its solution is not optimum. The main
advantage is that the algorithm is considerably faster than other methods and it should
provide good results in flat areas.

It has been shown that in areas influenced by topography, slope-adaptive methods are
undoubtedly needed. In this regard, the filter proposed in [17], assuming that an external
DEM is provided, offers good overall results. However, it only partially exploits the slope
information derived from the DEM. In this regard, the proposed range-filtering method has
shown that it can overcome all the limitations of the other filters and is able to extensively
suppress the geometrical decorrelation of the interferometric pair. We have shown that the
size of the filtering window (i.e., the number of samples used in the filtering process) has an
influence on the final results, so the proposed multi-scale strategy automatically adapts the
filter to all types of surface variations. Consequently, better performance is always obtained
regardless of the smoothness of the topography, and even some useful interferometric
fringes may be properly recovered in areas where the other filters are unable to achieve
this. The main drawback is that the proposed method is computationally slower than
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the other ones, but it optimizes the range-filtering step in complicated areas with strong
topographic variations.

In summary, we have seen that the removal of the geometrical decorrelation improves
the phase quality and globally increases the coherence between the interferometric image
pair. However, it is important to point out that besides improving the quality of the
InSAR phase and the other products derived from it, such as the topography of an area
or surface displacements in the case of differential interferometry, obtaining accurate
coherence measurements is crucial in other applications. In fact, there is a wide variety of
scientific applications that directly use coherence as an input feature and assume that all
decorrelation factors that depend on the sensor parameters and acquisitions’ geometry are
completely suppressed [24]. A geometrical decorrelation is a type of sensor- and geometry-
dependent term, as we have studied in this work. However, if properly compensated, the
resulting coherence will not only be increased but, more importantly, also better estimated
and only related to the specific characteristics of the imaged scene so it can be properly
exploited. Coherence-based applications include physical parameter estimations (such as
vegetation height, biomass, etc. [5–8]) and land-cover classifications [25,26], among others.
The removal of a geometrical decorrelation using an accurate range-filtering method will
therefore be beneficial not only for interferometry but also for other practical applications
that require coherence data that are not affected by decorrelation sources that are not
dependent on the scene variables to be estimated.
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