Sol-gel processing of a covalent organic framework for the generation of hierarchically porous monolithic adsorbents

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/126198
Información del item - Informació de l'item - Item information
Título: Sol-gel processing of a covalent organic framework for the generation of hierarchically porous monolithic adsorbents
Autor/es: Carrington, Mark E. | Rampal, Nakul | Madden, David G. | O’Nolan, Daniel | Casati, Nicola Pietro Maria | Divitini, Giorgio | Martín-Illán, Jesús Á. | Tricarico, Michele | Cepitis, Ritums | Çamur, Ceren | Curtin, Teresa | Silvestre-Albero, Joaquín | Tan, Jin-Chong | Zamora, Félix | Taraskin, Sergei | Chapman, Karena W. | Fairen-Jimenez, David
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Covalent organic frameworks | Processing | Gas adsorption | Separations
Fecha de publicación: 23-ago-2022
Editor: Cell Press
Cita bibliográfica: Chem. 2022, 8(11): 2961-2977. https://doi.org/10.1016/j.chempr.2022.07.013
Resumen: Covalent organic frameworks (COFs) have emerged as a versatile material platform for such applications as chemical separations, chemical reaction engineering, and energy storage. Their inherently low mechanical stability, however, frequently renders existing methods of pelletization ineffective, contributing to pore collapse, pore blockage, or insufficient densification of crystallites. Here, we present a process for the shaping and densifying of COFs into robust centimeter-scale porous monoliths without the need for templates, additives, or binders. This process minimizes mechanical damage from shear-induced plastic deformation and further provides a network of interparticle mesopores that we exploit in accessing analyte capacities above those achievable from the intrinsic COF structure. Using a lattice-gas model, we accurately capture the monolithic structure across the mesoporous range and tie pore architecture to performance in both gas-storage and -separation applications. Collectively, these results represent a substantial step in the practical applicability of COFs and other mechanically weak porous materials.
Patrocinador/es: M.E.C. acknowledges the support of the His Royal Highness the Prince of Wales Commonwealth Scholarship and the Trinity Henry Barlow Scholarship (honorary). N.R. acknowledges the support of the Cambridge International Scholarship and the Trinity Henry Barlow Scholarship (honorary). The X-ray total scattering measurements and multivariate analysis were supported as part of GENESIS: A Next-Generation Synthesis Center, an Energy Frontier Research Center funded by the US Department of Energy (DOE) Office of Science Basic Energy Sciences Program under award number DE-SC0019212. This research used beamline 11-ID-B of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. D.F.-J. thanks the Royal Society for a university research fellowship. We thank the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (NanoMOFdeli, ERC-2016-COG 726380) and Innovate UK (104384). J.S.-A. acknowledges financial support from MINECO (PID2019-108453GB-C21). J.-C.T. and M.T. appreciate the ERC Consolidator Grant (PROMOFS 771575) for supporting the research. J.A.M.-I. and F.Z. acknowledge support from the Ministerio de Ciencia e Innovación (PID2019-106268GB-C32).
URI: http://hdl.handle.net/10045/126198
ISSN: 2451-9294
DOI: 10.1016/j.chempr.2022.07.013
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.chempr.2022.07.013
Aparece en las colecciones:INV - LMA - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCarrington_etal_2022_Chem.pdf4,86 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons