Thermal luminosity degeneracy of magnetized neutron stars with and without hyperon cores

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/123711
Información del item - Informació de l'item - Item information
Título: Thermal luminosity degeneracy of magnetized neutron stars with and without hyperon cores
Autor/es: Anzuini, Filippo | Melatos, Andrew | Dehman, Clara | Viganò, Daniele | Pons, José A.
Grupo/s de investigación o GITE: Astrofísica Relativista
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Stars: neutron | Stars: interiors | Stars: magnetic fields | Stars: evolution
Área/s de conocimiento: Astronomía y Astrofísica
Fecha de publicación: 17-may-2022
Editor: Oxford University Press
Cita bibliográfica: Monthly Notices of the Royal Astronomical Society. 2022, 515(2): 3014-3027. https://doi.org/10.1093/mnras/stac1353
Resumen: The dissipation of intense crustal electric currents produces high Joule heating rates in cooling neutron stars. Here it is shown that Joule heating can counterbalance fast cooling, making it difficult to infer the presence of hyperons (which accelerate cooling) from measurements of the observed thermal luminosity Lγ. Models with and without hyperon cores match Lγ of young magnetars (with poloidal-dipolar field Bdip ≳ 1014 G at the polar surface and Lγ ≳ 1034 erg s−1 at t ≲ 105 yr) as well as mature, moderately magnetized stars (with Bdip ≲ 1014 G and 1031 erg s−1 ≲ Lγ ≲ 1032 erg s−1 at t ≳ 105 yr). In magnetars, the crustal temperature is almost independent of hyperon direct Urca cooling in the core, regardless of whether the latter is suppressed or not by hyperon superfluidity. The thermal luminosities of light magnetars without hyperons and heavy magnetars with hyperons have Lγ in the same range and are almost indistinguishable. Likewise, Lγ data of neutron stars with Bdip ≲ 1014 G but with strong internal fields are not suitable to extract information about the equation of state as long as hyperons are superfluid, with maximum amplitude of the energy gaps of the order ≈1 MeV.
Patrocinador/es: FA is supported by The University of Melbourne through a Melbourne Research Scholarship. AM acknowledges funding from an Australian Research Council Discovery Project grant (DP170103625) and the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav) (CE170100004). DV is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant "IMAGINE" No. 948582, PI DV). CD is supported by the ERC Consolidator Grant “MAGNESIA” (No. 817661, PI Nanda Rea) and this work has been carried out within the framework of the doctoral program in Physics of the Universitat Autònoma de Barcelona. JAP acknowledges support by the Generalitat Valenciana (PROMETEO/2019/071), AEI grant PGC2018-095984-B-I00 and the Alexander von Humboldt Stiftung through a Humboldt Research Award.
URI: http://hdl.handle.net/10045/123711
ISSN: 0035-8711 (Print) | 1365-2966 (Online)
DOI: 10.1093/mnras/stac1353
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1093/mnras/stac1353
Aparece en las colecciones:INV - Astrofísica Relativista - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAnzuini_etal_2022_MNRAS.pdf51,48 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.