Engineering Mesopore Formation in Hierarchical Zeolites under High Hydrostatic Pressure

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/118844
Información del item - Informació de l'item - Item information
Título: Engineering Mesopore Formation in Hierarchical Zeolites under High Hydrostatic Pressure
Autor/es: Sato, Riku | Liu, Zhendong | Peng, Ce | Tan, Che | Hu, Peidong | Zhu, Jie | Takemura, Masamori | Yonezawa, Yasuo | Yamada, Hiroki | Endo, Akira | Garcia-Martinez, Javier | Okubo, Tatsuya | Wakihara, Toru
Grupo/s de investigación o GITE: Laboratorio de Nanotecnología Molecular (NANOMOL)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica
Palabras clave: Engineering mesopore formation | Hierarchical zeolites | High hydrostatic pressure
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 18-oct-2021
Editor: American Chemical Society
Cita bibliográfica: Chemistry of Materials. 2021, 33(21): 8440-8446. https://doi.org/10.1021/acs.chemmater.1c02800
Resumen: Tailoring the textural properties of porous materials is of paramount importance to optimize their performance in a variety of applications. To this end, critical synthesis parameters influencing crystallization and reorganization of porous materials need to be identified and judiciously controlled. Although the effect of pressure on chemical transformations is ubiquitously present, its impact on fabricating porous materials with tailored physicochemical properties remains unexplored and its potential untapped. In this work, we disclose a detailed study on the effects of high hydrostatic pressure on the formation of well-controlled intracrystalline mesopores in ultrastable Y (USY) zeolite by the so-called surfactant-templating method. The rate of mesopore formation significantly increases upon elevating the pressure, whereas the average size of the mesopores—directed by the self-assembly of the surfactant—decreases. By simultaneously adjusting the external pressure and selecting surfactants of different lengths, we have been able to precisely control the mesopore size in the USY zeolite. Our findings clearly show that external hydrostatic pressure can be used to both accelerate mesopore formation and engineer their size with subnanometer precision. As a second example, we investigated the effect of external pressure on the synthesis of MCM-41. The results on MCM-41, consistent with our observations on the USY zeolite, further confirm that the use of high external pressure greatly affects the self-assembly behaviors of the amphiphilic molecules involved in the synthesis/modification of the porous materials. Our results show that the high-pressure approach represents an untapped opportunity for synthesis/modification of functional porous materials that will likely yield new discoveries in this field.
Patrocinador/es: Z.L. thanks the Japan Society for the Promotion of Science (JSPS) for financial support (a Grant-in-Aid for Young Scientists: 18K14049). This work was partly supported by New Energy and Industrial Technology Development Organization (NEDO) under Moonshot Project, the Japan Society for the Promotion of Science (JSPS), KAKENHI Grant-in-Aid for Transformative Research Areas (A) JP20A206/20H05880, and the Materials Processing Science project (“Materealize”) of MEXT, Grant Number JPMXP0219192801. J.G.-M. acknowledges funding from the European Commission through the H2020-MSCA-RISE-2019 program (ZEOBIOCHEM–872102) and the Spanish MICINN and AEI/FEDER (RTI2018-099504-B-C21).
URI: http://hdl.handle.net/10045/118844
ISSN: 0897-4756 (Print) | 1520-5002 (Online)
DOI: 10.1021/acs.chemmater.1c02800
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acs.chemmater.1c02800
Aparece en las colecciones:INV - NANOMOL - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailSato_etal_2021_ChemMater_final.pdfVersión final (acceso restringido)3,26 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailSato_etal_2021_ChemMater_revised.pdfVersión revisada (acceso abierto)3,17 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.