Three-Dimensional Coherent Bragg Imaging of Rotating Nanoparticles

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/112028
Información del item - Informació de l'item - Item information
Título: Three-Dimensional Coherent Bragg Imaging of Rotating Nanoparticles
Autor/es: Björling, Alexander | Marçal, Lucas A.B. | Solla-Gullón, José | Wallentin, Jesper | Carbone, Dina | Maia, Filipe R.N.C.
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Bragg coherent diffraction imaging | Rotating nanoparticles
Área/s de conocimiento: Química Física
Fecha de publicación: 9-dic-2020
Editor: American Physical Society
Cita bibliográfica: Physical Review Letters. 2020, 125: 246101. https://doi.org/10.1103/PhysRevLett.125.246101
Resumen: Bragg coherent diffraction imaging is a powerful strain imaging tool, often limited by beam-induced sample instability for small particles and high power densities. Here, we devise and validate an adapted diffraction volume assembly algorithm, capable of recovering three-dimensional datasets from particles undergoing uncontrolled and unknown rotations. We apply the method to gold nanoparticles which rotate under the influence of a focused coherent x-ray beam, retrieving their three-dimensional shapes and strain fields. The results show that the sample instability problem can be overcome, enabling the use of fourth generation synchrotron sources for Bragg coherent diffraction imaging to their full potential.
Patrocinador/es: Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research council under Contract No. 2018-07152, the Swedish Governmental Agency for Innovation Systems under Contract No. 2018-04969, and Formas under Contract No. 2019-02496. This work has also received funding from the ÅForsk Foundation (Contract No. 17-408), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Contract No. 801847), from the Olle Engkvist Foundation, from the Swedish Research council (Contract No. 2018-00234), and from NanoLund.
URI: http://hdl.handle.net/10045/112028
ISSN: 0031-9007 (Print) | 1079-7114 (Online)
DOI: 10.1103/PhysRevLett.125.246101
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Revisión científica: si
Versión del editor: https://doi.org/10.1103/PhysRevLett.125.246101
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailBjorling_etal_2020_PhysRevLett.pdf1,33 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons