Three-Dimensional Coherent Bragg Imaging of Rotating Nanoparticles

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/112028
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorElectroquímica Aplicada y Electrocatálisises_ES
dc.contributor.authorBjörling, Alexander-
dc.contributor.authorMarçal, Lucas A.B.-
dc.contributor.authorSolla-Gullón, José-
dc.contributor.authorWallentin, Jesper-
dc.contributor.authorCarbone, Dina-
dc.contributor.authorMaia, Filipe R.N.C.-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Físicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Electroquímicaes_ES
dc.date.accessioned2021-01-18T09:09:00Z-
dc.date.available2021-01-18T09:09:00Z-
dc.date.issued2020-12-09-
dc.identifier.citationPhysical Review Letters. 2020, 125: 246101. https://doi.org/10.1103/PhysRevLett.125.246101es_ES
dc.identifier.issn0031-9007 (Print)-
dc.identifier.issn1079-7114 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/112028-
dc.description.abstractBragg coherent diffraction imaging is a powerful strain imaging tool, often limited by beam-induced sample instability for small particles and high power densities. Here, we devise and validate an adapted diffraction volume assembly algorithm, capable of recovering three-dimensional datasets from particles undergoing uncontrolled and unknown rotations. We apply the method to gold nanoparticles which rotate under the influence of a focused coherent x-ray beam, retrieving their three-dimensional shapes and strain fields. The results show that the sample instability problem can be overcome, enabling the use of fourth generation synchrotron sources for Bragg coherent diffraction imaging to their full potential.es_ES
dc.description.sponsorshipResearch conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research council under Contract No. 2018-07152, the Swedish Governmental Agency for Innovation Systems under Contract No. 2018-04969, and Formas under Contract No. 2019-02496. This work has also received funding from the ÅForsk Foundation (Contract No. 17-408), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Contract No. 801847), from the Olle Engkvist Foundation, from the Swedish Research council (Contract No. 2018-00234), and from NanoLund.es_ES
dc.languageenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rights© 2020 American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.es_ES
dc.subjectBragg coherent diffraction imaginges_ES
dc.subjectRotating nanoparticleses_ES
dc.subject.otherQuímica Físicaes_ES
dc.titleThree-Dimensional Coherent Bragg Imaging of Rotating Nanoparticleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1103/PhysRevLett.125.246101-
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevLett.125.246101es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/801847es_ES
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailBjorling_etal_2020_PhysRevLett.pdf1,33 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons