Compensatory Thermal Adaptation of Soil Microbial Respiration Rates in Global Croplands

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/107881
Información del item - Informació de l'item - Item information
Título: Compensatory Thermal Adaptation of Soil Microbial Respiration Rates in Global Croplands
Autor/es: Ye, Jian‐Sheng | Bradford, Mark A. | Maestre, Fernando T. | Li, Feng‐Min | García‐Palacios, Pablo
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ecología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Palabras clave: Soil microbial respiration | Thermal adaptation | Global croplands | Climate change
Área/s de conocimiento: Ecología
Fecha de publicación: jun-2020
Editor: Wiley | American Geophysical Union
Cita bibliográfica: Global Biogeochemical Cycles. 2020, 34(6): e2019GB006507. doi:10.1029/2019GB006507
Resumen: Understanding whether soil microbial respiration adapts to the ambient thermal climate with an enhanced or compensatory response, hence potentially stimulating or slowing down soil carbon losses with warming, is key to accurately forecast and model climate change impacts on the global carbon cycle. Despite the interest in this topic and the plethora of recent studies in natural ecosystems, it has been seldom explored in croplands. Using two recently published independent datasets of soil microbial metabolic quotient (MMQ; microbial respiration rate per unit biomass) and carbon use efficiency (CUE; partitioning of C to microbial growth vs. respiration), we find a compensatory thermal adaptive response for MMQ in global croplands. That is, mean annual temperature (MAT) has a negative effect on MMQ. However, this compensatory thermal adaptation is only half or less of that found in previous studies for noncultivated ecosystems. In contrast to the negative MMQ‐MAT pattern, microbial CUE increases with MAT across global croplands. By incorporating this positive CUE‐MAT relationship (greater C partitioning into microbial growth rather than respiration with increasing temperature) into a microbial‐explicit soil organic carbon model, we successfully predict the thermal compensation of MMQ observed in croplands. Our model‐data integration and database cross‐validation suggest that a warmer climate may select for microbial communities with higher CUE, providing a plausible mechanism for their compensatory metabolic response. By helping to identify appropriate representations of microbial physiological processes in soil biogeochemical models, our work will help build confidence in model projections of cropland C dynamics under a changing climate.
Patrocinador/es: JSY was funded by the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0305) and the Fundamental Research Funds for the Central Universities (lzujbky‐2020‐kb43). This research was supported by the European Research Council (ERC Grant Agreement 647038 [BIODESERT]). PGP is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018‐024766‐I). MAB was partially supported by a US National Science Foundation grant (DEB‐1926482).
URI: http://hdl.handle.net/10045/107881
ISSN: 0886-6236 (Print) | 1944-9224 (Online)
DOI: 10.1029/2019GB006507
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 American Geophysical Union
Revisión científica: si
Versión del editor: https://doi.org/10.1029/2019GB006507
Aparece en las colecciones:Personal Investigador sin Adscripción a Grupo
INV - DRYLAB - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailYe_etal_2020_GlobBiogeochemCycles_final.pdf1,4 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.