Design of Monolithic Supports by 3D Printing for Its Application in the Preferential Oxidation of CO (CO-PrOx)

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/97368
Información del item - Informació de l'item - Item information
Título: Design of Monolithic Supports by 3D Printing for Its Application in the Preferential Oxidation of CO (CO-PrOx)
Autor/es: Chaparro-Garnica, Cristian Yesid | Davó-Quiñonero, Arantxa | Bailón-García, Esther | Lozano-Castello, Dolores | Bueno López, Agustín
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: 3D printing | CO-PrOx | Monolith | Ceria | Preferential oxidation
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 19-sep-2019
Editor: American Chemical Society
Cita bibliográfica: ACS Applied Materials & Interfaces. 2019, 11(40): 36763-36773. doi:10.1021/acsami.9b12731
Resumen: Honeycomb-shaped cordierite monoliths are widely used as supports for a large number of industrial applications. However, the high manufacturing cost of cordierite monoliths only justifies its use for high temperatures and aggressive chemical environments, demanding applications where the economic benefit obtained exceeds the manufacturing costs. For low demanding applications, such as the preferential oxidation of CO (CO-PrOx), alternative materials can be proposed to reduce manufacturing costs. Polymeric monoliths would be an interesting low-cost alternative; however, the limitations of the active phase incorporation to the polymeric support must be overcome. In this work, the implementation and use of polymeric monolithic structures obtained by three-dimensional printing to support CuO/CeO2 catalysts for CO-PrOx have been studied. Several approaches were used to anchor the active phase into the polymeric monoliths, such as adding inorganic materials (carbon or silica) to the polymer previous to the printing process, chemical attack with solvents of the printed resin before or during the active phase incorporation, and consecutive impregnation and modification of the channel wall design. Among those approaches, best results were obtained by the addition of silica and by channel modification. Independent of the strategy followed, a subsequent thermal treatment in N2 was required to soften the resin and favor the active phase anchoring. However, catalyst particles become embedded on the polymeric resin being not active, and thus, a final cleaning thermal treatment under air was needed to recover the active phase activity, after which the supported active phase demonstrated good catalytic activity, stability, and reusability.
Patrocinador/es: The authors acknowledge the financial support by the Spanish Ministry of Economy and Competitiveness (Project CTQ2015-67597-C2-2-R and grant FJCI-2015-23769), the Spanish Ministry of Education, Culture and Sports (grant FPU14/01178), Generalitat Valenciana (Project PROMETEO/2018/076 and Ph.D. grant GRISOLIAP/2017/177), and the UE (FEDER funding).
URI: http://hdl.handle.net/10045/97368
ISSN: 1944-8244 (Print) | 1944-8252 (Online)
DOI: 10.1021/acsami.9b12731
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acsami.9b12731
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Chaparro-Garnica_etal_ACSApplMaterInterfaces_final.pdfVersión final (acceso restringido)4,53 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Chaparro-Garnica_etal_ACSApplMaterInterfaces_accepted.pdfAccepted Manuscript (acceso abierto)952,22 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.