Finite difference time domain method (FDTD) to predict the efficiencies of the different orders inside a volume grating

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/9366
Información del item - Informació de l'item - Item information
Título: Finite difference time domain method (FDTD) to predict the efficiencies of the different orders inside a volume grating
Autor/es: Neipp, Cristian | Sheridan, John T. | Pascual, Carolina | Márquez, Andrés | Alvarez, Mariela L. | Pascual, Inmaculada | Beléndez, Augusto
Grupo/s de investigación o GITE: Holografía y Procesado Óptico
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | University College Dublin. Departament of Electronic and Electrical Engineering
Palabras clave: Holography | Holographic gratings | Volume holograms | Finite difference time domain method
Área/s de conocimiento: Óptica | Física Aplicada
Fecha de creación: 2005
Fecha de publicación: 8-jun-2005
Editor: SPIE, The International Society for Optical Engineering
Cita bibliográfica: NEIPP LÓPEZ, Cristian, et al. "Finite difference time domain method (FDTD) to predict the efficiencies of the different orders inside a volume grating".En: Opto-Ireland 2005: Photonic Engineering : 4-6 April 2005, Dublin, Ireland. Bellingham, Wash. : SPIE, 2005. (Proceedings of SPIE; Vol. 5827). ISBN 978-0-81945-812-4, pp. 140-151
Resumen: Different electromagnetic theories have been applied in order to understand the interaction of the electromagnetic radiation with diffraction gratings. Kogelnik's Coupled Wave Theory, for instance, has been applied with success to describe the diffraction properties of sinusoidal volume gratings. Nonetheless the predictions of Kogelnik's theory deviate from the actual behaviour whenever the hologram is thin or the refractive index is high. In these cases, it is necessary to use a more general Coupled Wave Theory (CW) or the Rigorous Coupled Wave Theory (RCW). Both of these theories allow for more than two orders propagating inside the hologram. On the other hand, there are some methods that have been used long in different physical situations, but with relatively low application in the field of holography. This is the case of the finite difference in the temporal domain (FDTD) method to solve Maxwell equations. In this work we present an implementation of this method applied to volume holographic diffraction gratings.
URI: http://hdl.handle.net/10045/9366
ISBN: 978-0-81945-812-4
ISSN: 0277-786X
DOI: 10.1117/12.605243
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Copyright 2005 Society of Photo-Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 5827, and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Revisión científica: si
Aparece en las colecciones:INV - GHPO - Artículos de Revistas
INV - GMECA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailSPIE_v5827_p140_2005.pdf378,03 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.