Enabling low power acoustics for capillary sonoreactors

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/91252
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorGrupo de Fotoquímica y Electroquímica de Semiconductores (GFES)es_ES
dc.contributor.authorNavarro-Brull, Francisco J.-
dc.contributor.authorTeixeira, Andrew R.-
dc.contributor.authorGiri, Gaurav-
dc.contributor.authorGómez, Roberto-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Físicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Electroquímicaes_ES
dc.date.accessioned2019-04-16T11:55:50Z-
dc.date.available2019-04-16T11:55:50Z-
dc.date.issued2019-09-
dc.identifier.citationUltrasonics Sonochemistry. 2019, 56: 105-113. doi:10.1016/j.ultsonch.2019.03.013es_ES
dc.identifier.issn1350-4177 (Print)-
dc.identifier.issn1873-2828 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/91252-
dc.description.abstractCapillary reactors demonstrate outstanding potential for on-demand flow chemistry applications. However, non-uniform distribution of multiphase flows, poor solid handling, and the risk of clogging limit their usability for continuous manufacturing. While ultrasonic irradiation has been traditionally applied to address some of these limitations, their acoustic efficiency, uniformity and scalability to larger reactor systems are often disregarded. In this work, high-speed microscopic imaging reveals how cavitation-free ultrasound can unclog and prevent the blockage of capillary reactors. Modeling techniques are then adapted from traditional acoustic designs and applied to simulate and prototype sonoreactors with wider and more uniform sonication areas. Blade-, block- and cylindrical shape sonotrodes are optimized to accommodate longer capillary lengths in sonoreactors resonating at 28 kHz. Finally, a novel helicoidal capillary sonoreactor is proposed to potentially deal with a high concentration of solid particles in miniaturized flow chemistry. The acoustic designs and first principle rationalization presented here offer a transformative step forward in the scale-up of efficient capillary sonoreactors.es_ES
dc.description.sponsorshipThis research was partially funded by the EU project MAPSYN (Microwave, Acoustic and Plasma SYNtheses) developed in the group of Photochemistry and Electrochemistry of Semiconductors (GFES) at the University of Alicante (Spain), under grant agreement No. CP-IP 309376 of the European Union Seventh Framework Program.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2019 Elsevier B.V.es_ES
dc.subjectPower ultrasoundes_ES
dc.subjectCapillary sonoreactores_ES
dc.subjectClogginges_ES
dc.subjectScale-upes_ES
dc.subjectModelinges_ES
dc.subjectMicroreactorses_ES
dc.subject.otherQuímica Físicaes_ES
dc.titleEnabling low power acoustics for capillary sonoreactorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.ultsonch.2019.03.013-
dc.relation.publisherversionhttps://doi.org/10.1016/j.ultsonch.2019.03.013es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/309376es_ES
Aparece en las colecciones:INV - GFES - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Navarro-Brull_etal_UltrasonicsSonochem_final.pdfVersión final (acceso restringido)1,99 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Navarro-Brull_etal_UltrasonicsSonochem_accepted.pdfAccepted Manuscript (acceso abierto)1,61 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.