Confined Pt11+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO2 Oxygen Atoms Coming from Water

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/87147
Información del item - Informació de l'item - Item information
Title: Confined Pt11+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO2 Oxygen Atoms Coming from Water
Authors: Rivero-Crespo, Miguel A. | Mon, Marta | Ferrando-Soria, Jesús | Lopes, Christian W. | Boronat, Mercedes | Leyva-Pérez, Antonio | Corma, Avelino | Hernández-Garrido, Juan C. | López-Haro, Miguel | Calvino, Jose J. | Ramos-Fernández, Enrique V. | Armentano, Donatella | Pardo, Emilio
Center, Department or Service: Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Single atom catalyst | Metal-organic frameworks | Platinum | Water clusters | Water–gas shift reaction
Knowledge Area: Química Inorgánica
Issue Date: 6-Nov-2018
Publisher: Wiley-VCH Verlag GmbH & Co. KGaA
Citation: Angewandte Chemie. 2018, 130(52): 17340-17345. doi:10.1002/ange.201810251
Abstract: The synthesis and reactivity of single metal atoms in a low‐valence state bound to just water, rather than to organic ligands or surfaces, is a major experimental challenge. Herein, we show a gram‐scale wet synthesis of Pt11+ stabilized in a confined space by a crystallographically well‐defined first water sphere, and with a second coordination sphere linked to a metal–organic framework (MOF) through electrostatic and H‐bonding interactions. The role of the water cluster is not only isolating and stabilizing the Pt atoms, but also regulating the charge of the metal and the adsorption of reactants. This is shown for the low‐temperature water–gas shift reaction (WGSR: CO + H2O → CO2 + H2), where both metal coordinated and H‐bonded water molecules trigger a double water attack mechanism to CO and give CO2 with both oxygen atoms coming from water. The stabilized Pt1+ single sites allow performing the WGSR at temperatures as low as 50 °C.
Sponsor: This work was supported by the MINECO (Spain) (Projects CTQ2016-75671-P, MAT2013 40823-R, MAT2016-81732-ERC, CTQ2017-86735-P, MAT2017-86992-R, MAT2017-82288-C2-1-P and Excellence Units “Severo Ochoa” and “Maria de Maeztu” SEV-2016-0683 and MDM-2015-0538) the Generalitat Valenciana (PROMETEOII/2014/004) and the Ministero dell’Istruzione, dell’Università e della Ricerca (Italy) and the Junta de Andalucía (FQM-195). M.M. and M.-A.R.C. thanks the MINECO for a predoctoral contract. Thanks are also extended to the Ramón y Cajal Program (E.V.R.-F., E.P. and J.C.H.-G.) and the “Subprograma atracció de talent-contractes postdoctorals de la Universitat de Valencia” (J.F.-S.). M.L.-H. acknowledges the financial support from the Juan de la Cierva Fellowships Program of MINECO (IJCI-2014-19367).
URI: http://hdl.handle.net/10045/87147
ISSN: 0044-8249 (Print) | 1521-3757 (Online)
DOI: 10.1002/ange.201810251
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Peer Review: si
Publisher version: https://doi.org/10.1002/ange.201810251
Appears in Collections:Personal Investigador sin Adscripción a Grupo

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Rivero-Crespo_etal_AngewChem_final.pdfVersión final (acceso restringido)6,69 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.