Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/71775
Información del item - Informació de l'item - Item information
Título: Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces
Autor/es: Echarri-Iribarren, Víctor | Espinosa Fernández, Almudena | Rizo-Maestre, Carlos
Grupo/s de investigación o GITE: Tecnología y Sostenibilidad en Arquitectura
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Construcciones Arquitectónicas
Palabras clave: Thermal transmittance | Building monitoring | Data correction algorithm | Raspberry Pi | Interior comfort | Thermal inertia | Annual energy demand
Área/s de conocimiento: Construcciones Arquitectónicas
Fecha de publicación: 8-dic-2017
Editor: MDPI
Cita bibliográfica: Echarri V, Espinosa A, Rizo C. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces. Sensors. 2017; 17(12):2848. doi:10.3390/s17122848
Resumen: Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.
Patrocinador/es: This research was developed within the research project of the Centre for Industrial Technical Development (CDTI), called “Research and design of constructive solutions for the energy improvement of buildings”, reference IDI-20110240, co-financed by the Fund for European Regional Development (ERDF). This fund was requested by the company ECISA. Compañía General de Construcciones S.A., following a formal agreement with the University of Alicante (Reference: ECISA1-10Y).
URI: http://hdl.handle.net/10045/71775
ISSN: 1424-8220
DOI: 10.3390/s17122848
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: http://dx.doi.org/10.3390/s17122848
Aparece en las colecciones:INV - TSA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Echarri_etal_Sensors.pdf25 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons