Bis(aminoaryl) Carbon-Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/66520
Información del item - Informació de l'item - Item information
Title: Bis(aminoaryl) Carbon-Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings
Authors: Mayorga Burrezo, Paula | Lin, Nai-Ti | Nakabayashi, Koji | Ohkoshi, Shin-ichi | Calzado Estepa, Eva María | Boj, Pedro G. | Díaz-García, María A. | Franco, Carlos | Rovira, Concepciò | Veciana, Jaume | Moos, Michael | Lambert, Christoph | López Navarrete, Juan T. | Tsuji, Hayato | Nakamura, Eiichi | Casado, Juan
Research Group/s: Física de la Materia Condensada
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Absorption | Charge transfer | Oligomerization | Radicals | Structure determination
Knowledge Area: Física Aplicada | Óptica | Física de la Materia Condensada
Issue Date: 6-Mar-2017
Publisher: Wiley-VCH Verlag GmbH & Co. KGaA
Citation: Angewandte Chemie International Edition. 2017, 56(11): 2898-2902. doi:10.1002/anie.201610921
Abstract: Carbon-bridged bis(aminoaryl) oligo(para-phenylenevinylene)s have been prepared and their optical, electrochemical, and structural properties analyzed. Their radical cations are class III and class II mixed-valence systems, depending on the molecular size, and they show electronic couplings which are among the largest for the self-exchange reaction of purely organic molecules. In their dication states, the antiferromagnetic coupling is progressively tuned with size from quinoidal closed-shell to open-shell biradicals. The data prove that the electronic coupling in the radical cations and the singlet–triplet gap in the dications show similar small attenuation factors, thus allowing charge/spin transfer over rather large distances.
Sponsor: We thank MINECO of the Spanish Government (CTQ2015-69391-P, CTQ2013-40480-R and MAT2015-66856-R) for their support. We also thank the Research Central Services (SCAI) of the University of Málaga. This work is partially supported by Grant-in-Aid for Scientific Research (16H04106 to HT and 15H05754 to EN) and the Strategic Promotion of Innovative Research, JST (to EN) from MEXT, Japan. M.H. and C.L. are grateful to the Deutsche Forschungsgemeinschaft for supporting this work (GRK 2112).
URI: http://hdl.handle.net/10045/66520
ISSN: 1433-7851 (Print) | 1521-3773 (Online)
DOI: 10.1002/anie.201610921 | 10.1002/ange.201610921
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Peer Review: si
Publisher version: http://dx.doi.org/10.1002/anie.201610921
Appears in Collections:INV - Física de la Materia Condensada - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Mayorga_etal_AngewChemIntEd_final.pdfVersión final (acceso restringido)1,68 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.