Shale Water Desalination: Multistage membrane distillation considering different configurations and heat integration

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/65247
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorComputer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)es_ES
dc.contributor.authorCarrero-Parreño, Alba-
dc.contributor.authorOnishi, Viviani C.-
dc.contributor.authorRuiz-Femenia, Rubén-
dc.contributor.authorSalcedo Díaz, Raquel-
dc.contributor.authorCaballero, José A.-
dc.contributor.authorLabarta, Juan A.-
dc.contributor.otherUniversidad de Alicante. Departamento de Ingeniería Químicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicoses_ES
dc.date.accessioned2017-04-06T10:26:17Z-
dc.date.available2017-04-06T10:26:17Z-
dc.date.created2016-11-13-
dc.date.issued2017-04-02-
dc.identifier.citation3rd International Conference on Desalination using Membrane Technology. Paper-MDES2017_0196es_ES
dc.identifier.urihttp://hdl.handle.net/10045/65247-
dc.description.abstractThis work introduces a simultaneous synthesis of membrane distillation systems with heat exchanger networks (HENs) for desalinating shale gas flowback and produce water. The direct contact and vacuum membrane configurations are the best options for desalination. Moreover, multistage membrane distillation systems usually have higher efficiencies than single-stages processes. For this reason, two different mathematical models for synthetizing multistage direct contact membrane distillation (MSDCMD) and multistage vacuum membrane distillation (MSVMD) are developed and optimized to achieve zero liquid discharge (ZLD) conditions. To this aim, brine discharges are considered to be near to the salt saturation conditions. The multi-stage superstructures are implemented in GAMS and optimized by SBB solver. The mathematical model is formulated via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP), to minimize the total annualized cost.es_ES
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 640979.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rightsLicencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0es_ES
dc.subjectDesalinationes_ES
dc.subjectMembranees_ES
dc.subjectDistillationes_ES
dc.subjectShalees_ES
dc.subjectFlowbackes_ES
dc.subjectProducedes_ES
dc.subjectWateres_ES
dc.subject.otherIngeniería Químicaes_ES
dc.titleShale Water Desalination: Multistage membrane distillation considering different configurations and heat integrationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.peerreviewedsies_ES
dc.relation.publisherversionhttp://memdes2017.elseviermarketing.com/es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/640979es_ES
Aparece en las colecciones:INV - CONCEPT - Comunicaciones a Congresos, Conferencias, etc.
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMDES_2017_MDwithHI.pdf518,4 kBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons