A kilobyte rewritable atomic memory

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/58073
Información del item - Informació de l'item - Item information
Título: A kilobyte rewritable atomic memory
Autor/es: Kalff, Floris | Rebergen, Marnix P. | Fahrenfort, Nora | Girovsky, Jan | Toskovic, Ranko | Lado, Jose L. | Fernández-Rossier, Joaquín | Otte, Alexander F.
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Scanning probe microscopy | Structural properties | Surface patterning | Surfaces, interfaces and thin films
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 18-jul-2016
Editor: Macmillan Publishers
Cita bibliográfica: Nature Nanotechnology. 2016, 11: 926-929. doi:10.1038/nnano.2016.131
Resumen: The advent of devices based on single dopants, such as the single-atom transistor1, the single-spin magnetometer2, 3 and the single-atom memory4, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy5 provides ways to store data in atoms, encoded either into their charge state6, 7, magnetization state8, 9, 10 or lattice position11. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.
Patrocinador/es: This work was supported by the Netherlands Organisation for Scientific Research (NWO/OCW), the Foundation for Fundamental Research on Matter (FOM), and by the Kavli Foundation. JFR and JLL acknowledge financial support by Marie-Curie-ITN Grant no. 607904-SPINOGRAPH. JFR acknowledges financial support by MEC-Spain (Grant no. FIS2013-47328-C2-2-P) and Generalitat Valenciana (PROMETEO 2012/011).
URI: http://hdl.handle.net/10045/58073
ISSN: 1748-3387 (Print) | 1748-3395 (Online)
DOI: 10.1038/nnano.2016.131
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2016 Macmillan Publishers Limited, part of Springer Nature
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1038/nnano.2016.131
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Kalff_etal_NatureNanotech_preprint.pdfPreprint (acceso abierto)1,89 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.