Role of Hydroxyl Groups in the Preferential Oxidation of CO over Copper Oxide–Cerium Oxide Catalysts

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/53070
Información del item - Informació de l'item - Item information
Title: Role of Hydroxyl Groups in the Preferential Oxidation of CO over Copper Oxide–Cerium Oxide Catalysts
Authors: Davó-Quiñonero, Arantxa | Navlani-García, Miriam | Lozano Castelló, Dolores | Bueno López, Agustín | Anderson, James A.
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: PROX | Copper | Ceria | CO oxidation | H2 purification
Knowledge Area: Química Inorgánica
Issue Date: 1-Feb-2016
Publisher: American Chemical Society
Citation: ACS Catalysis. 2016, 6: 1723-1731. doi:10.1021/acscatal.5b02741
Abstract: Model CuO/Ce0.8X0.2Oδ catalysts (with X = Ce, Zr, La, Pr, or Nd) have been prepared in order to obtain CuO/ceria materials with different chemical features and have been characterized by X-ray diffraction, Raman spectroscopy, N2 adsorption, and H2 temperature-programmed reduction. CO-PROX experiments have been performed in a fixed-bed reactor and in an operando DRIFTS cell coupled to a mass spectrometer. The CO oxidation rate over CuO/ceria catalysts correlates with the formation of the Cu+–CO carbonyl above a critical temperature (90 °C for the experimental conditions in this study) because copper–carbonyl formation is the rate-limiting step. Above this temperature, CO oxidation capacity depends on the redox properties of the catalyst. However, decomposition of adsorbed intermediates is the slowest step below this threshold temperature. The hydroxyl groups on the catalyst surface play a key role in determining the nature of the carbon-based intermediates formed upon CO chemisorption and oxidation. Hydroxyls favor the formation of bicarbonates with respect to carbonates, and catalysts forming more bicarbonates produce faster CO oxidation rates than those which favor carbonates.
Sponsor: The authors thank the financial support of Generalitat Valenciana (Project PROMETEOII/2014/010 and Grant BEST/2014/250), the Spanish Ministry of Economy and Competitiveness (Projects CTQ2012-30703, CTQ2012-31762, MAT2014-61992-EXP, and Grant PRX14/00249), and the UE (FEDER funding).
URI: http://hdl.handle.net/10045/53070
ISSN: 2155-5435
DOI: 10.1021/acscatal.5b02741
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2016 American Chemical Society
Peer Review: si
Publisher version: http://dx.doi.org/10.1021/acscatal.5b02741
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Davo_etal_ACS-Cat_final.pdfVersión final (acceso restringido)2,2 MBAdobe PDFOpen    Request a copy
Thumbnail2016_Davo_etal_ACS-Cat_accepted.pdfAccepted Manuscript (acceso abierto)1,3 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.