Evaluation of Pt–Rh Nanoparticle–Based Electrodes for the Electrochemical Reduction of Nitrogen to Ammonia

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/142074
Información del item - Informació de l'item - Item information
Título: Evaluation of Pt–Rh Nanoparticle–Based Electrodes for the Electrochemical Reduction of Nitrogen to Ammonia
Autor/es: Amrine, Roumayssa | Montiel, Miguel A. | Montiel, Vicente | Solla-Gullón, José
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Electrocatalysis | Nitrogen reduction | Ammonia | Pt–Rh | Nanoparticles
Fecha de publicación: 6-abr-2024
Editor: Springer Nature
Cita bibliográfica: Electrocatalysis. 2024. https://doi.org/10.1007/s12678-024-00870-1
Resumen: Ammonia (NH3) is one of the most used chemicals. Industrially, ammonia is produced by hydrogenation of N2 through the Haber–Bosch process, a process in which enormous amounts of CO2 are released and requires a huge energy consumption (~ 2% of the total global energy). Therefore, it is of paramount importance to explore more sustainable and environmentally friendly routes to produce NH3. The electrochemical nitrogen reduction reaction (NRR) to ammonia represents a promising alternative that is receiving great attention but still needs to be significantly improved to be economically competitive. In this work, the NRR is studied on Pt–Rh nanoparticle–based electrodes. Carbon-supported Pt–Rh nanoparticles (2–4 nm) with different Pt:Rh atomic compositions were synthesized and subsequently airbrushed onto carbon Toray paper to fabricate electrodes. The electrochemical NRR experiments were performed in a H-cell in 0.1 M Na2SO4 solution. The results obtained show interesting faradaic efficiencies (FE) towards NH3 which range between 5 and 23% and reasonable and reliable NH3 yield values of about 4.5 µg h−1 mgcat−1, depending on the atomic composition of the electrocatalysts and the metal loading. The electrodes also showed good stability and recyclability (constant FE and NH3 yield in five consecutive experiments).
Patrocinador/es: R. A. acknowledges the Ministry of Higher Education and Scientific Research of the People’s Democratic Republic of Algeria for the financial support to carry out her PhD study at the University of Alicante, Spain. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
URI: http://hdl.handle.net/10045/142074
ISSN: 1868-2529 (Print) | 1868-5994 (Online)
DOI: 10.1007/s12678-024-00870-1
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Revisión científica: si
Versión del editor: https://doi.org/10.1007/s12678-024-00870-1
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAmrine_etal_2024_Electrocatalysis.pdf1,54 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.