Improving the Catalytic Performance of BaMn0.7Cu0.3O3 Perovskite for CO Oxidation in Simulated Cars Exhaust Conditions by Partial Substitution of Ba

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/141222
Información del item - Informació de l'item - Item information
Título: Improving the Catalytic Performance of BaMn0.7Cu0.3O3 Perovskite for CO Oxidation in Simulated Cars Exhaust Conditions by Partial Substitution of Ba
Autor/es: Ghezali, Nawel | Díaz Verde, Álvaro | Illán-Gómez, María José
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Ba/Cu/Mn perovskite-type mixed oxides | Sol–gel synthesis | CO oxidation | Ce/La/Mg
Fecha de publicación: 28-feb-2024
Editor: MDPI
Cita bibliográfica: Molecules. 2024, 29(5): 1056. https://doi.org/10.3390/molecules29051056
Resumen: The sol–gel method, adapted to aqueous media, was used for the synthesis of BaMn0.7Cu0.3O3 (BMC) and Ba0.9A0.1Mn0.7Cu0.3O3 (BMC-A, A = Ce, La or Mg) perovskite-type mixed oxides. These samples were fully characterized by ICP-OES, XRD, XPS, H2-TPR, BET, and O2–TPD and, subsequently, they were evaluated as catalysts for CO oxidation under different conditions simulating that found in cars exhaust. The characterization results show that after the partial replacement of Ba by A metal in BMC perovskite: (i) a fraction of the polytype structure was converted to the hexagonal BaMnO3 perovskite structure, (ii) A metal used as dopant was incorporated into the lattice of the perovskite, (iii) oxygen vacancies existed on the surface of samples, and iv) Mn(IV) and Mn(III) coexisted on the surface and in the bulk, with Mn(IV) being the main oxidation state on the surface. In the three reactant atmospheres used, all samples catalysed the CO to CO2 oxidation reaction, showing better performances after the addition of A metal and for reactant mixtures with low CO/O2 ratios. BMC-Ce was the most active catalyst because it combined the highest reducibility and oxygen mobility, the presence of copper and of oxygen vacancies on the surface, the contribution of the Ce(IV)/Ce(III) redox pair, and a high proportion of surface and bulk Mn(IV). At 200 °C and in the 0.1% CO + 10% O2 reactant gas mixture, the CO conversion using BMC-Ce was very similar to the achieved with a 1% Pt/Al2O3 (Pt-Al) reference catalyst.
Patrocinador/es: This research was funded by the Spanish Government (MINCINN: PID2019-105542RB-I00/AEI/10.13039/501100011033 Project), the European Union (FEDER Funds), and Generalitat Valenciana (CIPROM/2021-070 Project). N. Ghezali thanks Argelian Government for her thesis grant and Á. Díaz-Verde thanks the University of Alicante for his predoctoral contract.
URI: http://hdl.handle.net/10045/141222
ISSN: 1420-3049
DOI: 10.3390/molecules29051056
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/molecules29051056
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGhezali_etal_2024_Molecules.pdf3,16 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.