Revealing the Intrinsic Restructuring of Bi2O3 Nanoparticles into Bi Nanosheets during Electrochemical CO2 Reduction

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/141144
Información del item - Informació de l'item - Item information
Título: Revealing the Intrinsic Restructuring of Bi2O3 Nanoparticles into Bi Nanosheets during Electrochemical CO2 Reduction
Autor/es: Avila-Bolivar, Beatriz | Lopez Luna, Mauricio | Yang, Fengli | Yoon, Aram | Montiel, Vicente | Solla-Gullón, José | Chee, See Wee | Roldan Cuenya, Beatriz
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Bismuth oxide nanoparticles | Carbon dioxide electroreduction | Catalyst restructuring | In situ studies | Liquid cell transmission electron microscopy | Operando Raman spectroscopy
Fecha de publicación: 26-feb-2024
Editor: American Chemical Society
Cita bibliográfica: ACS Appled Materials & Interfaces. 2024, 16(9): 11552-11560. https://doi.org/10.1021/acsami.3c18285
Resumen: Bismuth is a catalyst material that selectively produces formate during the electrochemical reduction of CO2. While different synthesis strategies have been employed to create electrocatalysts with better performance, the restructuring of bismuth precatalysts during the reaction has also been previously reported. The mechanism behind the change has, however, remained unclear. Here, we show that Bi2O3 nanoparticles supported on Vulcan carbon intrinsically transform into stellated nanosheet aggregates upon exposure to an electrolyte. Liquid cell transmission electron microscopy observations first revealed the gradual restructuring of the nanoparticles into nanosheets in the presence of 0.1 M KHCO3 without an applied potential. Our experiments also associated the restructuring with solubility of bismuth in the electrolyte. While the consequent agglomerates were stable under moderate negative potentials (−0.3 VRHE), they dissolved over time at larger negative potentials (−0.4 and −0.5 VRHE). Operando Raman spectra collected during the reaction showed that under an applied potential, the oxide particles reduced to metallic bismuth, thereby confirming the metal as the working phase for producing formate. These results inform us about the working morphology of these electrocatalysts and their formation and degradation mechanisms.
Patrocinador/es: B.Á.-B. is grateful to the MICINN Spanish Ministry for the predoctoral grant (reference CTQ2016-76231-C2-2-R). B.Á.-B., V.M., and J.S.-G. acknowledge financial support by the MICINN Spanish Ministry, (Project PID2019-108136RB-C32) and Generalitat Valenciana (Project PROMETEO/2020/063). F.Y. acknowledges funding from the Chinese Scholars Council, A.Y. from the Humboldt Foundation (Germany), and M.L.L from the National Council of Science and Technology of Mexico (CONACyT, Grant No. 708585).
URI: http://hdl.handle.net/10045/141144
ISSN: 1944-8244 (Print) | 1944-8252 (Online)
DOI: 10.1021/acsami.3c18285
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acsami.3c18285
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAvila-Bolivar_etal_2024_ACSApplMaterInterfaces.pdf8,67 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.